SURPRISINGLY SHORT
ASSAF RINOT

ABSTRACT. This note is a compilation of several results in set theory
which has surprisingly short proofs. From time to time (e.g., whenever
I write down notes for my tutor lectures), more results will be added to
this compilation.
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1. DIAMOND PRINCIPLES

1.1. Jensen’s diamond is (nearly) a cardinal arithmetic statement.
Recall that for a regular uncountable cardinal # and a stationary subset
S C 0, $g is said to hold iff there exists a collection {Ss | § € S} such that
for any Z C 0, the set {6 € S| Ss = Z N J} is stationary.

Evidently, if A is a cardinal and {S5 | 6 € AT} is a collection witnessing
Oat, then [AT]SA = {Z C AT | |Z] < A} C {Ss | § € AT}, In particular,
O+ implies 2% = A*. The result of this section deals with the inverse
implication and has been established by Shelah [8]. Soon afterwards, Péter
Komjath found a more friendly proof [3], and sometime later, we found
a considerably shorter proof which avoids the first ingredient of the two
ingredients of Shelah’s proof. The next proof is extracted from [5].

Theorem (Shelah). Suppose \ is a cardinal satisfying 2* = \*.
Then s holds for any stationary S C {6 < At | ¢f(d) # cf(N)}.

Proof. For all § < A\, let {A% | i < cf(M\)} C [0 x6]<* be an increasing chain
converging to § x §. By 2% = At let {X35 | 3 < AT} be an enumeration of
A x A x AT]=A For all (4,7) € Ax A and X C A X A x AT, let m;,(X) :=
{y < A" | (i,7,7) € X}. For aset BC At x At and (i,7) € A x A, denote:

(B)ir = U{Wi,T(X,@) | (o, B) € B for some a}.
Now, suppose S C {0 < AT | cf(d) # cf(\)} is a given stationary set.

Claim. There exists (i,7) € A x \, and for all § € S, there exists Bs C A%
such that ((Bs)i- |0 € S) is a {s sequence.

Proof. Suppose not, we build by recursion on 7 < A, three sequences:
() ({Z0[i < A} |7 <)
(ID) ({Cr i< A} 7 <A);
(ITD) ({A4(T) i< A deSNCLY|T<).
Base case, 7 = 0. By the hypothesis, for all i < A, ((A%);0 | d € S) is not
a {g sequence, so pick a set Zé C A" and a club C’S C A" witnessing that.
Namely, fixing i < A and § € S N C§, we have:

ZEN 6 # (AL = U{WLO(Xg) | (o, B) € A5 for some a}.

In particular, either there exists some (o, ) € A% such that Zi N« #
7;0(X3), or sup{a < § | (o, B) € AL} < . I the latter case, put A%(0) :=
A%, In the former case, pick (o, ) € A} with Z) N« # m0(Xp) and let
A3(0) := A3\ {(a, B)}.

Now, assume that the three sequences are defined up to some 7. Let
D:=N{C!|e<ti<A} Foralld € DNS, and i < A, put B} :=
N{A%(e) | € < 7}. By the hypothesis, for all i < A, ((B%);, | 6 € SN D) is
not a <»g sequence, so pick a set Zi C A\* and a club Cj C D witnessing
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that. As before, for all i < A and § € S N CL, put A4(7) := B: in the case
that sup{a < 0 | (a, 3) € Bi} < 4, or else, let Ai(7) := Bi\ {(«a,3)} for
some (a, 3) € B} satisfying Z! N« # m; . (X3).

This completes the construction. To meet a contradiction, put Z :=
{(i,7,7) | i < \,7 < X,y € Z'} and define a function f : AT — At by
letting:

fla):=min{B < AT | ZN(Ax A xa)= Xz}, (a<Ah).

Since {0 < At | f[6] € 8} is a club, pick 6 € SN,y ;<) CL with f[5] C 6.
Since f [0 €6 X6 = ey A% let us define g : § — cf()) as follows:

g(a) =min{i < cf(\) | (o, f(@)) € AL}, (a < 0).

As § = g7 'ef(N)] and cf(d) # cf(N), there must exist some i* < cf(\)
such that H := ¢g~'[¢*] is cofinal in 0. By A5 D |J,_,. A, this means that
f 1 HC AY. Recall that by definition of f, if « € H, and 8 = f(«), then
78 Na = mp(Xp) for all 7 < A It now follows from f | H C A% and
the definition of the construction that f | H C A% (7) for all 7 < A. In
particular, sup{a < § | (o, ) € A% (1)} > sup(H) = § for all 7 < A, and
hence (A% (1) | 7 < A) must be a strictly decreasing sequence of subsets of
AL contradicting the fact that |A% | < \. O

g

It is worth mentioning that for stationary subsets of {§ < A" | cf(d) =
cf(A)}, there are consistency results concerning the failure of diamond. For
instance, Jensen proved that CH is consistent with =<, , and Shelah estab-
lished the consistency of GCH with =g for S = {§ < Ny | cf(d) = N;}. As
for subsets of {0 < AT | ¢f(d) = cf(N\)}, where X is singular — the situation
here is subtle, and we refer the interested reader to the following survey
presentation:

http://www.tau.ac.il/"rinot/rinot_best18.pdf

1.2. Magidor’s notion of silly diamond. In order to prove Corollary 1.3
below, Magidor have introduced the notion of silly diamond, where instead
of guessing subsets of A*, we are only required to guess subsets of \.

Theorem 1.1 (Magidor). Suppose M C V' is model of ZFC, X is a cardinal
inV, PNM =P and 2* = \T.

Then for every S C At in M which is stationary in V, there exists a
sequence in M which is a silly diamond sequence over S for V, that is,
there exists a sequence A = (As | 6 € S) such that:

(1) Ae M;
(2) VEVX CAX({0e€ S| As= X} is stationary).
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Proof. Work in M. Fix a an enumeration {Y, | « < At} of P(\ x A). For
all 6 < A*, let {Yy | i < A} be some enumeration of {Y, | a < d}. For all
de S, put Ay ={a< M| (j,a) € Yj}.

Claim 1.2. There exists some i < X such that A = (A% | § € S) works.

Proof. Suppose not. Work in V. Then, for all : < A\, we may pick a set
X" C X and a club C* C AT such that A} # X' for all § € SN C". Put
Y = U, {1} x X*, and find @ < At such that Y = Y,. Fix§ € SN, C*
with 0 > «, and fix 7 < A such that Y = Y;;j. Then in particular, Ag =
{a <X (j,a) € Y} = X7, a contradiction to § € SN CY. O

0

Corollary 1.3. Suppose M C 'V is model of ZFC, X is a cardinal in V,
PAM =P and 2* = AT,

Then, in M there exists a partition of {0 < AT | cf(6) = cf(N\)} into AT
many V -stationary sets.

Proof. Put S := {6 < A" | cf(§) = cf(N\)}. Notice that by P(\)M = P(\)Y,
we have that M and V agrees on the cardinal structure up to A*, that
S € M, and that S is stationary in V.

Now, let (A5 | 6 € S) be a silly diamond sequence for S given by the
preceding theorem. For all X C A, denote Sx := {6 € S| As = X}. Then
Sx is stationary in V', and the partition S = [#{Sx | X C A} liesin M. O

Andrés Caicedo pointed out that the preceding corollary is actually a
well-known consequence of a theorem by Erdos, Hajnal and Milner. Yet, it
appears that Magidor was unaware of it.

We also thank Andrés Caicedo for communicating to us a result by Paul
Larson, showing that the hypothesis “2* = A*” in the preceding corollary
cannot be dropped.
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2. SCH HOLDS ABOVE A STRONGLY-COMPACT CARDINAL

Fix a regular cardinal \. Recall that for a cardinal k, P.(\) denotes the
family of subsets of A of cardinality less than . An ultrafilter U over P, ()
is fine iff for every a < A, the ‘final segment’ & := {X € P.(\) |a € X} is
a member of U.

Definition 2.1. A cardinal k is A-strongly compact iff there exists a k-
complete fine ultrafilter over P, (A).
A cardinal k is strongly compact iff it is A-compact for all cardinals A\ > k.

This section will be dedicated to proving the following theorem from [9]:

Theorem (Solovay). The Singular Cardinal Hypothesis (SCH) holds above
the first strongly compact cardinal (if exists).

By a celebrated result of Silver from [7], to show that SCH holds above a
cardinal , it suffices to prove that AY = \ for all regular A\ > . The latter
will be established in this section. The simplified proof is due to 777

Lemma 2.2. Suppose k is a \-strongly compact cardinal, then every collec-
tion of less than k many stationary subsets of { < \ | cf(B) < k} mutually
reflects at some 6 < X of cofinality < k.

Proof. Let U is an ultrafilter witnessing that « is A-strongly compact. Con-
sider P<MV /U, an ultrapower of the universe. Since U is k-complete, the ul-
trapower is well-founded, and we may identify it with its transitive collapse,
M. For each z in V| let C,, denote the constant function C, : P.(A) — {x}.
Now, defining j : V' — M by letting j(x) := [C,]y for all z € V yields an
elementary embedding from the universe to a transitive proper class.

Consider the identity function, id : P.(A) — Pk(A). Since {X € P.()) |
|1d(X)] < Cu(X)} = Pu(A) € U, we get that |[id]y| < j(k). Since U is
fine, for all & < A, we have {X € P.(\) | Co(X) € 1d(X)} € U, and hence
j(a) € [id]y. Thus j\ C [id]y and [j“A\ < j(k). Put § := sup(j“N).
So cf(§) < j(k). Also, since sup(X) < A for all X € P.()\), we get from
J“A C [id]y that 0 < j(A).

Fix p < k and suppose S = {S, | @ < p} is a collection of stationary
subsets of {# < A | cf(B) < k}. Since U is k-complete, we get that j [ k is
the identity function. In particular, j(u) = p and j(S) = {j(Sa) | @ < pu}.

Let a < p be arbitrary. We have j“S, C j(S,) and actually j“S, C
j(Sa) Né. Suppose now C'is a club in §. Since j is elementary and j | &
is the identity function, we get that j((3) = sup(j“3) for every limit ordinal
B with cf(8) < k. So, j“\ is a k-club in §, and hence C'N j“\ is a k-club.
Let D C XAin V be such that j“D = C N j“\. Then D is a x-club. Since
S, is stationary, and § € S, = cf(5) < Kk, S, must meet the x-club D. So
S, N D # 0, and hence j(S,) NC # 0.
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Thus, we have shown that:
M E 36 < j(A) (cf(6) < j(k),VS € j(S)(S N is stationary)) .
Consequently:
V=36 < A(cf(0) < k,VS € (SN is stationary)). O

Corollary 2.3. Suppose A\ > k are reqular cardinals.
If k 1is strongly compact, then A\ = \.

Proof. Clearly, it suffices to prove that A<* = A. Let (S, | @ < A) be a
partition of {a < A | cf(a) = w} into A many mutually-disjoint stationary
sets. For each § < A, consider the set As = {a < A | S, N§ is stationary }.
Clearly, if § < A and cf(d) < &, then there exists a club subset of ¢ of
cardinality < k. Consequently, |As| < & for such § (because the stationary
subsets are mutually-disjoint), and also |P(As)| < k, because & is strongly
inaccessible.

Finally, by the previous lemma, for all a € [A]<", there exists some § < A
such that a € As. Thus, [A]<" C (J{P(4s) | 0 < A, cf(d) < K}, and so
ASE =\, O
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3. PARTITION RELATIONS

Recall the arrow notation: for ordinals £ < A\, (A) — (k)3 asserts that

for any function f : [\]*> — 2, there exists some H C X of order-type  such
that |f“[H]?| = 1.

A well-known theorem of Frank Ramsey states that (w) — (w)3, and its
proof can be found in any relevant textbook. Consequently, (w;) — (w)3.

In the next subsection it is shown that (w;) — (w;)3 does not hold, and
actually a strong negation of it, due to Todorcevic, holds.

So, how about (w;) — (w;)3? In subsection 3.2 it is proved that the latter

happens to be equivalent to the Continuum Hypothesis.

3.1. A strong negation of (w;) — (w;)3. This subsection will be dedi-
cated to proving the following somewhat surprising theorem.

2

Theorem (Todorcevié, [10]). There exists a coloring h : [wi]* — wy such

that every uncountable Z C wy satisfies h“[Z]* = w;.
The simplified presentation given here is due to Dan Velleman [11].
Definition 3.1. For every B C wy, denote:
CP={6<w |BC6tU{d<w ||B|=Ry,6=sup(BNJ)}.
Lemma 3.2. For all B C wy, CP is a club.

Proof. Fix B C wy. To see that CP is closed, suppose (a, | n < w) is an
increasing sequence of elements of CP, and let a := sup,,_, a,,. If B C «,
then we are done. Otherwise, B € «,, for all n < w, then |B| = Ny, and
a, = sup(B Nay,) for all n < w. To see that a = sup(B N «), we need to
show that for all # < « there exists some v € BN« above 3. Now, simply
notice that if § < «a, then there exists some n < w with § < a,, < a and by
a, = sup(B N «,), we may find some v € B N «, above (.

To see that CP is unbounded, pick 3 < w;. If B is countable, then we
may find some § < w; such that B C §, and then 3+§ € CF as well. If B is
uncountable, then just pick an increasing sequence of elements (a,, | n < w)
from B with ag > 8. Thus « := sup,,_, o, satisfies a € CB. g

For the sake of this proof, fix w; many distinct functions {r, | @ <w;} C
“2. Forevery Z C wy,n < wand g : n — 2, denote BgZ ={a€Z|gCry}.

Corollary 3.3. For any Z C wq, the following set is a club:
Cy={6<wi|Vge 2 ((Bgz C ) or (|BgZ| =N, and § = sup(BgZ Nnd)))}.

Proof. Since Cz =N ge<w? CB7 and the countable intersection of clubs is a
club. [

For a function g and a set A C dom(g), g“A denotes the set {g(a) | a € A}.
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Theorem 3.4. There exists a function f : [w1]*> — wy such that f“[Z]?
contains a club for any unbounded Z C wy.

Proof. For each av < wy, by |a| < R, let us fix some injection e, : @ — w.
For any a < < wy, let:

Ala, 8) = minfn < w | ra(n) # ra(n)},

[(a, 8) == {y < Bles(y) < Ala, f)} \ o

Thus T'(a, ) C [a, B). If T'(a, B) is empty, let f(«,3) := 0, otherwise,
let f(a, ) := minT'(«, 3). We claim that C; C f[Z] for any unbounded
Z g wi.

Indeed, fix an unbounded Z C w; and some § € Cy. Since Z is un-
bounded, let us pick an arbitrary § € Z satisfying 3 > 6. We now aim at
finding some o < § with o € Z such that f(«a, ) = 6. Put n = ez(d),
g: =13 [ n. Then g Crgand B € BgZ. In particular, BgZ Z o < 3, so by
0 € Cz, we have |B7| = N;.

For each v € BgZ, put m, := A(v, ). Clearly, m, > n. Evidently, there
exists some uncountable subset B C BQZ such that m.,, equals to some fixed
m < w for all v € B.

By shrinking further, we may also assume that r, [ m +1 = h for some
fixed h:m+1— w for all v € B.

Thus, for B?, we have B C BZ, i.e., |BZ| = Ny, and by § € Cz, we
get that sup(BZ Nd) = 6. Let F = {y < § | esg(y) < m}. Since e is an
injection, F is finite and sup(F) < 4, and so there exists some o € B N §
with F' C a. We claim that o works.

Indeed, by a € BZ, we have A(a, 3) > m > n = eg(d), i.e., § € I'(a, B).
We need to show that § is minimal in that sense. Pick v € I'(«, 5). Then
eg(y) < m. If, in addition, v < 6, then v € F', but then v < «, contradicting
the fact that I'(a, 8) N = 0. O

Lemma 3.5. There exists a function ¢ : wy — wy such that Y[C] = wy for
any club C' C wy.

Proof. Let (S, | @ < wy) be a partition of w; into mutually disjoint station-
ary sets. Now, for a < wy, let ¥(a)) = f where (3 is the unique ordinal such
that o € Sﬁ.

Finally, notice that if C' is a club, then C'N Sz # 0 for all § < wy. U

Corollary 3.6. There exists a function h : [w1]* — wy such that h*[Z])* = w,
for any unbounded Z C w;.

Proof. Put h = ¢ o f, for some f as in Theorem 3.4 and v as in Lemma
3.5. O
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3.2. The Continuum Hypothesis and (ws) — (w1)3.

Theorem 3.7 (Erdos-Rado [2], Sierpinski [6]). The following are equivalent:
(1) CH, i.@., 2NO = Nl,'
(2) (Ro) — (Ry)3.

Proof. (1)=-(2) The simplified proof given here is due to Simpson. Suppose
f i [wa)® — 2 is given. For every countable X C w, and y € wy \ X, define
fX o X — 2 by letting f,X(x) := f(x,y) for all z € X. Notice that by CH,
the following set is of cardinality < Nj:

¢~ = {f |y € w2\ sup(X)}.

We now define a continuous and increasing chain {M, | a < w;} C [wo]™
by induction on a < w;.

Let My be an arbitrary subset of w, of cardinality ¥;. Given M,, by
[[M,]=¥| = Ny and the above remark, pick some M, ; € [ws]™ extending
M,, such that ¢* = {f,¥ | y € Maq1\sup(X)} for every countable X C M,.

Finally, let M = U, Ma. Since |[M| = Xy, let us pick some y* €
wy \ sup(M). We shall now define an increasing sequence of ordinals (y, |
a <wi) € [Tocw, Mat-

Let yo be an arbitrary element of M;. Suppose Xz := {yn | @ < (8} is
defined for some 3 < w;. By the construction of Mgy, there exists some

ys € Mgy \ sup(Mp) such that f;gﬁ = f;iﬁ, so let yg be such element. This
completes the description of the construction.

Leti < 2, put H; := {ya | @ < w1, f(ya,y*) = i}. Notice that if « < § and
Yar Yp € Hy, then f(ya,ys) = f(Ya,y*) = i. Consequently, f“[H;]* = {i}.

The proof is complete noticing that Xy € {|Hy|, |H1l|}

(-1) = (=2) Pick X C R of cardinality Ry. Let < denote the natural
ordering of the real line and let < be some well-ordering of X.

Define f : [X]? — 2 by letting f(x,y) = 1 iff {(x,y), (y,z)}N < ND £ 0,
that is, iff < and < agrees on the relation of x and y. Now assume towards a
contradiction that Y C X is a set of cardinality 8y, such that f“[Y]? = {1}.?

By thinning out, we may assume that Y has no maximal element, so for
all y € Y, define the successor of y to be the minimal element above it:

gj::mqin{ZEY |z #y,y <z}
But y<dy implies that y < ¢, and so {(y,9) | ¥ € Y} is an uncountable family
of mutually-disjoint open intervals of the real line, but this is impossible,

because each such interval contains a (distinct) rational point, and there
are only countably many rational numbers. U

2The other case is handled in the same fashion.
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4. THE CONSISTENCY OF THE NEGATION OF BOREL’S CONJECTURE

Recall that a subset X C R is said to be a null set iff for every positive
e € R there exists a sequence of open intervals (I, | n < w) such that
X CU,-Inandalso Y, _ |I,| <e?

A subset X C R is said to be a strongly null set iff for every sequence of
positive real numbers, (g, | n < w), there exists a sequence of open intervals
(I, | n < w) such that X C |, _, I and also |[,| < &, for all n < w.

Clearly, any strongly null set is a null set, and any countable subset of R
is strongly null. Also, there are well-known examples of uncountable null
sets, but what about uncountable strongly null sets?

Emile Borel conjectured that a set is strongly null iff it is countable. In [4],
Richard Laver proved the consistency of this conjecture. In this section, we
shall include a proof for the consistency of the negation of Borel’s conjecture.

This result is considered as folklore, but its ingredients are due to Luzin.

Theorem. CH =- There exists an uncountable strongly null set.

Proof. By 2% =Ny, let F = {F,, | @ < w;} be an enumeration of all closed
nowhere dense subsets of R.

Fix a < wy. Since « is countable, by Baire category theorem, Ug <o F5#
R, so let us pick some z, € R\ Uz, F5-

Let X := {2z, | @ <w;}. Clearly, for all @« < wy, XN F, C{zg|f < a}.
In particular, since all singletons are in JF, the set X is uncountable.

Finally, suppose (g, | n < w) is a sequence of positive real numbers. Let
{q2n | n < w} be some enumeration of Q. For all n < w, pick an interval
Iy, such that qa, € Is, and |I5,| < €2,.

Consider the set G = |, ., I2n; this is an open and dense set, and hence
there exists some a < w; such that R\ G = F,. By |X N F,| < Vg, let
{¥2n+1 | » < w} be some enumeration of X \ G. For all n < w, pick an
interval Ioniq such that Yont1 € Iopy1 and |12n+1| < E9p+1-

Clearly, X C | O

n<w [n

3Here, |I| denotes the diameter of the open interval I.
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5. SQUARE SEQUENCES

Definition 5.1. We say that a stationary set S carries a square sequence
type-bounded by n iff there exists a collection {C,, | & € S} such that for all
limit a € S:

(1) C, is a club subset of S, and otp(C,) < n;

(2) if B € acc(C,), then g € S and Cz = C, N S.

Here, acc(C,,) := {0 € C, | sup(C, N ) = }. Jensen’s square principle,
[y, is the assertion that A™ carries a partial square sequence. Note that [J,,
holds trivially.

In this section, we would like to present Shelah’s results that, quite of-

ten, many stationary subsets of successor cardinals carries a partial square
sequence. For this, we first need the following well-known lemma.

Theorem 5.2 (Engelking-Kartowicz). For cardinals k < X\ < p < 2*, the
following are equivalent:

(1) A<=\,
(2) there exists a collection of functions, (f; i — A | i < A), such that
for every X € [u]<" and every function f : X — A, there exists some

i < A with f C f;.
Proof. (2)=(1) Suppose (f; : p — A|i < A) is a given collection. Then
{fiTOi<AO<k} <A<,

so there must exists some f € <F)\ with f & f; for all i < \.
(1)=(2) The simplified proof here is due to Shelah. Put:

W= {(a, A g) | a € N, A € [a]*",g € "N}
Then |W| = A<F = A, and we may fix an enumeration
W = {(az;Azagz) | 1< )\}

By p < 2X let (B, | @ < i) be a sequence of distinct subsets of . For all
1 < A\, we now define f; : u — A, by letting for all o < pu:

fi(e) = {g(ai NB,), a;NDB, €A

0, otherwise

Finally, suppose that a set X € [pu|<* and a function f : X — X are given.
For all distinct o, 3 € X, pick z(a,8) € B,ABg. Put a = {z(o,[3) |
a,f € X,a # B}. Then, |a] < k and for all distinct o, € X, we have
aN B, # an Bg. It follows that |A| = |a|, where A :={aN B, | « € X}.
It also follows that we may well-define a function g : A — A by letting:

g(an By) == f(a), (a€X).
Pick i < A such that (a, A, g) = (a;, A;, g;). Then, f C f;. O
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Theorem 5.3 (Shelah, [?]). Suppose k < X are cardinals such that A<F = \.
Denote T := {a < A" | w < cf(a) < k}; then T is the union of X many
sets, each carrying a partial square sequence type-bounded by k. That is,
there exists sequences ((C% | o € S;) | i < \) such that:
(1) Ui<)\ S;=T;
(2) for alli < X and o € S;:
(a) C° is a club subset of o, with otp(C’) < k;
(b) Cp = CiN B for all B € acc(Cy).
Proof. By A<F = )\, let us fix for each @ < AT, an enumeration {A?7 | j < A}
of [a]<F. By A<% = A, and the Engelking-Kartowicz theorem, we may pick a

collection of functions (f; : AT — A | i < A) such that for every X € [A\T]<"
and every function f: X — A, there exists some i < A with f C f;.

For each i < A and a € T, denote C := AL,
Now, for each 7 < A, put:

S;:={a € T | C. satisfies 2(a) + 2(b)}.

Finally, we fix some a € T', and show that o € | J,_, S;.
Let D, be a club subset of a with otp(D,,) < k. Consider the function
f:DyU{a} — X defined by:

f(B) :=min{j < X[ Do NB=AL}, (B€DsU{a}).
Pick ¢ < A such that f C f;, then for all 5 € D, U {a}, we have:
Danf= AL® = 4B _ o
and hence o € S;. O

Corollary 5.4. If \** = ), then {a < A\t | w < cf(a) < A} is the union of
A many sets, each carrying a partial square sequence type-bounded by .

In future versions of this section, we shall be presenting Shelah’s improve-
ments to the preceding corollary.
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