ASSAF RINOT

ABSTRACT. This note is a compilation of several results in set theory which has surprisingly short proofs. From time to time (e.g., whenever I write down notes for my tutor lectures), more results will be added to this compilation.

Contents

1 Diamond principles	າ
1. Diamond principles	2
1.1. Jensen's diamond is (nearly) a cardinal arithmetic statement	2
1.2. Magidor's notion of silly diamond	3
2. SCH holds above a strongly-compact cardinal	5
3. Partition relations	7
3.1. A strong negation of $(\omega_1) \to (\omega_1)_2^2$	7
3.2. The Continuum Hypothesis and $(\omega_2) \to (\omega_1)_2^2$	9
4. The consistency of the negation of Borel's conjecture	10
5. Square Sequences	11
References	13

1. DIAMOND PRINCIPLES

1.1. Jensen's diamond is (nearly) a cardinal arithmetic statement. Recall that for a regular uncountable cardinal θ and a stationary subset $S \subseteq \theta$, \diamondsuit_S is said to hold iff there exists a collection $\{S_{\delta} \mid \delta \in S\}$ such that for any $Z \subseteq \theta$, the set $\{\delta \in S \mid S_{\delta} = Z \cap \delta\}$ is stationary.

Evidently, if λ is a cardinal and $\{S_{\delta} \mid \delta \in \lambda^+\}$ is a collection witnessing \Diamond_{λ^+} , then $[\lambda^+]^{\leq \lambda} = \{Z \subseteq \lambda^+ \mid |Z| \leq \lambda\} \subseteq \{S_{\delta} \mid \delta \in \lambda^+\}$. In particular, \Diamond_{λ^+} implies $2^{\lambda} = \lambda^+$. The result of this section deals with the inverse implication and has been established by Shelah [8]. Soon afterwards, Péter Komjáth found a more friendly proof [3], and sometime later, we found a considerably shorter proof which avoids the first ingredient of the two ingredients of Shelah's proof. The next proof is extracted from [5].

Theorem (Shelah). Suppose λ is a cardinal satisfying $2^{\lambda} = \lambda^+$. Then \diamondsuit_S holds for any stationary $S \subseteq \{\delta < \lambda^+ \mid \mathrm{cf}(\delta) \neq \mathrm{cf}(\lambda)\}.$

Proof. For all $\delta < \lambda^+$, let $\{A^i_{\delta} \mid i < \operatorname{cf}(\lambda)\} \subseteq [\delta \times \delta]^{<\lambda}$ be an increasing chain converging to $\delta \times \delta$. By $2^{\lambda} = \lambda^+$, let $\{X_{\beta} \mid \beta < \lambda^+\}$ be an enumeration of $[\lambda \times \lambda \times \lambda^+]^{\leq \lambda}$. For all $(i, \tau) \in \lambda \times \lambda$ and $X \subseteq \lambda \times \lambda \times \lambda^+$, let $\pi_{i,\tau}(X) := \{\gamma < \lambda^+ \mid (i, \tau, \gamma) \in X\}$. For a set $B \subseteq \lambda^+ \times \lambda^+$ and $(i, \tau) \in \lambda \times \lambda$, denote:

 $(B)_{i,\tau} := \bigcup \{ \pi_{i,\tau}(X_{\beta}) \mid (\alpha, \beta) \in B \text{ for some } \alpha \}.$

Now, suppose $S \subseteq \{\delta < \lambda^+ \mid cf(\delta) \neq cf(\lambda)\}$ is a given stationary set.

Claim. There exists $(i, \tau) \in \lambda \times \lambda$, and for all $\delta \in S$, there exists $B_{\delta} \subseteq A^{i}_{\delta}$ such that $\langle (B_{\delta})_{i,\tau} | \delta \in S \rangle$ is a \Diamond_{S} sequence.

Proof. Suppose not, we build by recursion on $\tau < \lambda$, three sequences:

- (I) $\langle \{Z^i_\tau \mid i < \lambda\} \mid \tau < \lambda \rangle;$
- (II) $\langle \{ C^i_\tau \mid i < \lambda \} \mid \tau < \lambda \rangle;$
- (III) $\langle \{A^i_{\delta}(\tau) \mid i < \lambda, \delta \in S \cap C^i_{\tau} \} \mid \tau < \lambda \rangle.$

Base case, $\tau = 0$. By the hypothesis, for all $i < \lambda$, $\langle (A^i_{\delta})_{i,0} | \delta \in S \rangle$ is not a \Diamond_S sequence, so pick a set $Z^i_0 \subseteq \lambda^+$ and a club $C^i_0 \subseteq \lambda^+$ witnessing that. Namely, fixing $i < \lambda$ and $\delta \in S \cap C^i_0$, we have:

$$Z_0^i \cap \delta \neq (A_{\delta}^i)_{i,0} = \bigcup \{ \pi_{i,0}(X_{\beta}) \mid (\alpha, \beta) \in A_{\delta}^i \text{ for some } \alpha \}.$$

In particular, either there exists some $(\alpha, \beta) \in A^i_{\delta}$ such that $Z^i_0 \cap \alpha \neq \pi_{i,0}(X_{\beta})$, or $\sup\{\alpha < \delta \mid (\alpha, \beta) \in A^i_{\delta}\} < \alpha$. In the latter case, put $A^i_{\delta}(0) := A^i_{\delta}$. In the former case, pick $(\alpha, \beta) \in A^i_{\delta}$ with $Z^i_0 \cap \alpha \neq \pi_{i,0}(X_{\beta})$ and let $A^i_{\delta}(0) := A^i_{\delta} \setminus \{(\alpha, \beta)\}$.

Now, assume that the three sequences are defined up to some τ . Let $D := \bigcap \{C^i_{\epsilon} \mid \epsilon < \tau, i < \lambda\}$. For all $\delta \in D \cap S$, and $i < \lambda$, put $B^i_{\delta} := \bigcap \{A^i_{\delta}(\epsilon) \mid \epsilon < \tau\}$. By the hypothesis, for all $i < \lambda$, $\langle (B^i_{\delta})_{i,\tau} \mid \delta \in S \cap D \rangle$ is not a \Diamond_S sequence, so pick a set $Z^i_{\tau} \subseteq \lambda^+$ and a club $C^i_{\tau} \subseteq D$ witnessing

that. As before, for all $i < \lambda$ and $\delta \in S \cap C^i_{\tau}$, put $A^i_{\delta}(\tau) := B^i_{\delta}$ in the case that $\sup\{\alpha < \delta \mid (\alpha, \beta) \in B^i_{\delta}\} < \delta$, or else, let $A^i_{\delta}(\tau) := B^i_{\delta} \setminus \{(\alpha, \beta)\}$ for some $(\alpha, \beta) \in B^i_{\delta}$ satisfying $Z^i_{\tau} \cap \alpha \neq \pi_{i,\tau}(X_{\beta})$.

This completes the construction. To meet a contradiction, put $Z := \{(i, \tau, \gamma) \mid i < \lambda, \tau < \lambda, \gamma \in Z^i_{\tau}\}$ and define a function $f : \lambda^+ \to \lambda^+$ by letting:

$$f(\alpha) := \min\{\beta < \lambda^+ \mid Z \cap (\lambda \times \lambda \times \alpha) = X_\beta\}, \quad (\alpha < \lambda^+).$$

Since $\{\delta < \lambda^+ \mid f[\delta] \subseteq \delta\}$ is a club, pick $\delta \in S \cap \bigcap_{\tau < \lambda} \bigcap_{i < \lambda} C^i_{\tau}$ with $f[\delta] \subseteq \delta$. Since $f \upharpoonright \delta \subseteq \delta \times \delta = \bigcup_{i < cf(\lambda)} A^i_{\delta}$, let us define $g : \delta \to cf(\lambda)$ as follows:

$$g(\alpha) = \min\{i < \operatorname{cf}(\lambda) \mid (\alpha, f(\alpha)) \in A^i_{\delta}\}, \quad (\alpha < \delta).$$

As $\delta = g^{-1}[\operatorname{cf}(\lambda)]$ and $\operatorname{cf}(\delta) \neq \operatorname{cf}(\lambda)$, there must exist some $i^* < \operatorname{cf}(\lambda)$ such that $H := g^{-1}[i^*]$ is cofinal in δ . By $A_{\delta}^{i^*} \supseteq \bigcup_{i < i^*} A_{\delta}^i$, this means that $f \upharpoonright H \subseteq A_{\delta}^{i^*}$. Recall that by definition of f, if $\alpha \in H$, and $\beta = f(\alpha)$, then $Z_{\tau}^{i^*} \cap \alpha = \pi_{i^*,\tau}(X_{\beta})$ for all $\tau < \lambda$. It now follows from $f \upharpoonright H \subseteq A_{\delta}^{i^*}$ and the definition of the construction that $f \upharpoonright H \subseteq A_{\delta}^{i^*}(\tau)$ for all $\tau < \lambda$. In particular, $\sup\{\alpha < \delta \mid (\alpha, \beta) \in A_{\delta}^{i^*}(\tau)\} \ge \sup(H) = \delta$ for all $\tau < \lambda$, and hence $\langle A_{\delta}^{i^*}(\tau) \mid \tau < \lambda \rangle$ must be a strictly decreasing sequence of subsets of $A_{\delta}^{i^*}$, contradicting the fact that $|A_{\delta}^{i^*}| < \lambda$.

It is worth mentioning that for stationary subsets of $\{\delta < \lambda^+ \mid cf(\delta) = cf(\lambda)\}$, there are consistency results concerning the failure of diamond. For instance, Jensen proved that CH is consistent with $\neg \diamondsuit_{\omega_1}$, and Shelah established the consistency of GCH with $\neg \diamondsuit_S$ for $S = \{\delta < \aleph_2 \mid cf(\delta) = \aleph_1\}$. As for subsets of $\{\delta < \lambda^+ \mid cf(\delta) = cf(\lambda)\}$, where λ is *singular* — the situation here is subtle, and we refer the interested reader to the following survey presentation:

http://www.tau.ac.il/~rinot/rinot_best18.pdf

1.2. Magidor's notion of silly diamond. In order to prove Corollary 1.3 below, Magidor have introduced the notion of silly diamond, where instead of guessing subsets of λ^+ , we are only required to guess subsets of λ .

Theorem 1.1 (Magidor). Suppose $M \subseteq V$ is model of ZFC, λ is a cardinal in V, $\mathcal{P}(\lambda)^M = \mathcal{P}(\lambda)^V$ and $2^{\lambda} = \lambda^+$.

Then for every $S \subseteq \lambda^+$ in M which is stationary in V, there exists a sequence in M which is a silly diamond sequence over S for V, that is, there exists a sequence $\vec{A} = \langle A_{\delta} | \delta \in S \rangle$ such that:

- (1) $A \in M;$
- (2) $V \models \forall X \subseteq \lambda (\{\delta \in S \mid A_{\delta} = X\} \text{ is stationary}).$

Proof. Work in M. Fix a an enumeration $\{Y_{\alpha} \mid \alpha < \lambda^{+}\}$ of $\mathcal{P}(\lambda \times \lambda)$. For all $\delta < \lambda^{+}$, let $\{Y_{\delta}^{i} \mid i < \lambda\}$ be some enumeration of $\{Y_{\alpha} \mid \alpha < \delta\}$. For all $\delta \in S$, put $A_{\delta}^{i} = \{\alpha < \lambda \mid (i, \alpha) \in Y_{\delta}^{i}\}$.

Claim 1.2. There exists some $i < \lambda$ such that $\vec{A} = \langle A^i_{\delta} | \delta \in S \rangle$ works.

Proof. Suppose not. Work in V. Then, for all $i < \lambda$, we may pick a set $X^i \subseteq \lambda$ and a club $C^i \subseteq \lambda^+$ such that $A^i_{\delta} \neq X^i$ for all $\delta \in S \cap C^i$. Put $Y := \bigcup_{i < \lambda} \{i\} \times X^i$, and find $\alpha < \lambda^+$ such that $Y = Y_{\alpha}$. Fix $\delta \in S \cap \bigcap_{i < \lambda} C^i$ with $\delta > \alpha$, and fix $j < \lambda$ such that $Y = Y^j_{\delta}$. Then in particular, $A^j_{\delta} = \{\alpha < \lambda \mid (j, \alpha) \in Y\} = X^j$, a contradiction to $\delta \in S \cap C^j$.

Corollary 1.3. Suppose $M \subseteq V$ is model of ZFC, λ is a cardinal in V, $\mathcal{P}(\lambda)^M = \mathcal{P}(\lambda)^V$ and $2^{\lambda} = \lambda^+$.

Then, in M there exists a partition of $\{\delta < \lambda^+ \mid cf(\delta) = cf(\lambda)\}$ into λ^+ many V-stationary sets.

Proof. Put $S := \{\delta < \lambda^+ \mid \mathrm{cf}(\delta) = \mathrm{cf}(\lambda)\}$. Notice that by $\mathcal{P}(\lambda)^M = \mathcal{P}(\lambda)^V$, we have that M and V agrees on the cardinal structure up to λ^+ , that $S \in M$, and that S is stationary in V.

Now, let $\langle A_{\delta} \mid \delta \in S \rangle$ be a silly diamond sequence for S given by the preceding theorem. For all $X \subseteq \lambda$, denote $S_X := \{\delta \in S \mid A_{\delta} = X\}$. Then S_X is stationary in V, and the partition $S = \bigcup \{S_X \mid X \subseteq \lambda\}$ lies in M. \Box

Andrés Caicedo pointed out that the preceding corollary is actually a well-known consequence of a theorem by Erdös, Hajnal and Milner. Yet, it appears that Magidor was unaware of it.

We also thank Andrés Caicedo for communicating to us a result by Paul Larson, showing that the hypothesis " $2^{\lambda} = \lambda^{+}$ " in the preceding corollary cannot be dropped.

2. SCH holds above a strongly-compact cardinal

Fix a regular cardinal λ . Recall that for a cardinal κ , $\mathcal{P}_{\kappa}(\lambda)$ denotes the family of subsets of λ of cardinality less than κ . An ultrafilter U over $\mathcal{P}_{\kappa}(\lambda)$ is *fine* iff for every $\alpha < \lambda$, the 'final segment' $\hat{\alpha} := \{X \in \mathcal{P}_{\kappa}(\lambda) \mid \alpha \in X\}$ is a member of U.

Definition 2.1. A cardinal κ is λ -strongly compact iff there exists a κ complete fine ultrafilter over $\mathcal{P}_{\kappa}(\lambda)$.

A cardinal κ is strongly compact iff it is λ -compact for all cardinals $\lambda \geq \kappa$.

This section will be dedicated to proving the following theorem from [9]:

Theorem (Solovay). The Singular Cardinal Hypothesis (SCH) holds above the first strongly compact cardinal (if exists).

By a celebrated result of Silver from [7], to show that SCH holds above a cardinal κ , it suffices to prove that $\lambda^{\aleph_0} = \lambda$ for all regular $\lambda \geq \kappa$. The latter will be established in this section. The simplified proof is due to ???

Lemma 2.2. Suppose κ is a λ -strongly compact cardinal, then every collection of less than κ many stationary subsets of $\{\beta < \lambda \mid cf(\beta) < \kappa\}$ mutually reflects at some $\delta < \lambda$ of cofinality $< \kappa$.

Proof. Let U is an ultrafilter witnessing that κ is λ -strongly compact. Consider $\mathcal{P}_{\kappa}(\lambda)V/U$, an ultrapower of the universe. Since U is κ -complete, the ultrapower is well-founded, and we may identify it with its transitive collapse, M. For each x in V, let C_x denote the constant function $C_x : \mathcal{P}_{\kappa}(\lambda) \to \{x\}$. Now, defining $j : V \to M$ by letting $j(x) := [C_x]_U$ for all $x \in V$ yields an elementary embedding from the universe to a transitive proper class.

Consider the identity function, $\operatorname{id} : \mathcal{P}_{\kappa}(\lambda) \to \mathcal{P}_{\kappa}(\lambda)$. Since $\{X \in \mathcal{P}_{\kappa}(\lambda) \mid |\operatorname{id}(X)| < C_{\kappa}(X)\} = \mathcal{P}_{\kappa}(\lambda) \in U$, we get that $|[\operatorname{id}]_{U}| < j(\kappa)$. Since U is fine, for all $\alpha < \lambda$, we have $\{X \in \mathcal{P}_{\kappa}(\lambda) \mid C_{\alpha}(X) \in \operatorname{id}(X)\} \in U$, and hence $j(\alpha) \in [\operatorname{id}]_{U}$. Thus $j^{*}\lambda \subseteq [\operatorname{id}]_{U}$ and $|j^{*}\lambda| < j(\kappa)$. Put $\delta := \sup(j^{*}\lambda)$. So $\operatorname{cf}(\delta) < j(\kappa)$. Also, since $\sup(X) < \lambda$ for all $X \in \mathcal{P}_{\kappa}(\lambda)$, we get from $j^{*}\lambda \subseteq [\operatorname{id}]_{U}$ that $\delta < j(\lambda)$.

Fix $\mu < \kappa$ and suppose $\mathcal{S} = \{S_{\alpha} \mid \alpha < \mu\}$ is a collection of stationary subsets of $\{\beta < \lambda \mid \mathrm{cf}(\beta) < \kappa\}$. Since U is κ -complete, we get that $j \upharpoonright \kappa$ is the identity function. In particular, $j(\mu) = \mu$ and $j(\mathcal{S}) = \{j(S_{\alpha}) \mid \alpha < \mu\}$.

Let $\alpha < \mu$ be arbitrary. We have $j^{*}S_{\alpha} \subseteq j(S_{\alpha})$ and actually $j^{*}S_{\alpha} \subseteq j(S_{\alpha}) \cap \delta$. Suppose now C is a club in δ . Since j is elementary and $j \upharpoonright \kappa$ is the identity function, we get that $j(\beta) = \sup(j^{*}\beta)$ for every limit ordinal β with $\operatorname{cf}(\beta) < \kappa$. So, $j^{*}\lambda$ is a κ -club in δ , and hence $C \cap j^{*}\lambda$ is a κ -club. Let $D \subseteq \lambda$ in V be such that $j^{*}D = C \cap j^{*}\lambda$. Then D is a κ -club. Since S_{α} is stationary, and $\beta \in S_{\alpha} \Rightarrow \operatorname{cf}(\beta) < \kappa$, S_{α} must meet the κ -club D. So $S_{\gamma} \cap D \neq \emptyset$, and hence $j(S_{\alpha}) \cap C \neq \emptyset$.

Thus, we have shown that:

 $M \models \exists \delta < j(\lambda) \left(\mathrm{cf}(\delta) < j(\kappa), \forall S \in j(\mathcal{S})(S \cap \delta \text{ is stationary}) \right).$

Consequently:

 $V \models \exists \delta < \lambda \, (\mathrm{cf}(\delta) < \kappa, \forall S \in \mathcal{S}(S \cap \delta \text{ is stationary})) \,. \quad \Box$

Corollary 2.3. Suppose $\lambda \geq \kappa$ are regular cardinals. If κ is strongly compact, then $\lambda^{\aleph_0} = \lambda$.

Proof. Clearly, it suffices to prove that $\lambda^{<\kappa} = \lambda$. Let $\langle S_{\alpha} \mid \alpha < \lambda \rangle$ be a partition of $\{\alpha < \lambda \mid cf(\alpha) = \omega\}$ into λ many mutually-disjoint stationary sets. For each $\delta < \lambda$, consider the set $A_{\delta} = \{\alpha < \lambda \mid S_{\alpha} \cap \delta \text{ is stationary }\}$. Clearly, if $\delta < \lambda$ and $cf(\delta) < \kappa$, then there exists a club subset of δ of cardinality $< \kappa$. Consequently, $|A_{\delta}| < \kappa$ for such δ (because the stationary subsets are mutually-disjoint), and also $|\mathcal{P}(A_{\delta})| < \kappa$, because κ is strongly inaccessible.

Finally, by the previous lemma, for all $a \in [\lambda]^{<\kappa}$, there exists some $\delta < \lambda$ such that $a \subseteq A_{\delta}$. Thus, $[\lambda]^{<\kappa} \subseteq \bigcup \{\mathcal{P}(A_{\delta}) \mid \delta < \lambda, \mathrm{cf}(\delta) < \kappa\}$, and so $\lambda^{<\kappa} = \lambda$.

 $\mathbf{6}$

3. PARTITION RELATIONS

Recall the arrow notation: for ordinals $\kappa \leq \lambda$, $(\lambda) \to (\kappa)_2^2$ asserts that for any function $f: [\lambda]^2 \to 2$, there exists some $H \subseteq \lambda$ of order-type κ such that $|f''[H]^2| = 1$.¹

A well-known theorem of Frank Ramsey states that $(\omega) \to (\omega)_2^2$, and its proof can be found in any relevant textbook. Consequently, $(\omega_1) \to (\omega)_2^2$.

In the next subsection it is shown that $(\omega_1) \to (\omega_1)_2^2$ does not hold, and actually a strong negation of it, due to Todorcevic, holds.

So, how about $(\omega_2) \to (\omega_1)_2^2$? In subsection 3.2 it is proved that the latter happens to be equivalent to the Continuum Hypothesis.

3.1. A strong negation of $(\omega_1) \to (\omega_1)_2^2$. This subsection will be dedicated to proving the following somewhat surprising theorem.

Theorem (Todorčević, [10]). There exists a coloring $h : [\omega_1]^2 \to \omega_1$ such that every uncountable $Z \subseteq \omega_1$ satisfies $h^{(Z)} = \omega_1$.

The simplified presentation given here is due to Dan Velleman [11].

Definition 3.1. For every $B \subseteq \omega_1$, denote:

 $C^B := \{\delta < \omega_1 \mid B \subseteq \delta\} \cup \{\delta < \omega_1 \mid |B| = \aleph_1, \delta = \sup(B \cap \delta)\}.$

Lemma 3.2. For all $B \subseteq \omega_1$, C^B is a club.

Proof. Fix $B \subseteq \omega_1$. To see that C^B is closed, suppose $\langle \alpha_n \mid n < \omega \rangle$ is an increasing sequence of elements of C^B , and let $\alpha := \sup_{n < \omega} \alpha_n$. If $B \subseteq \alpha$, then we are done. Otherwise, $B \not\subseteq \alpha_n$ for all $n < \omega$, then $|B| = \aleph_1$, and $\alpha_n = \sup(B \cap \alpha_n)$ for all $n < \omega$. To see that $\alpha = \sup(B \cap \alpha)$, we need to show that for all $\beta < \alpha$ there exists some $\gamma \in B \cap \alpha$ above β . Now, simply notice that if $\beta < \alpha$, then there exists some $n < \omega$ with $\beta < \alpha_n < \alpha$ and by $\alpha_n = \sup(B \cap \alpha_n)$, we may find some $\gamma \in B \cap \alpha_n$ above β .

To see that C^B is unbounded, pick $\beta < \omega_1$. If *B* is countable, then we may find some $\delta < \omega_1$ such that $B \subseteq \delta$, and then $\beta + \delta \in C^B$ as well. If *B* is uncountable, then just pick an increasing sequence of elements $\langle \alpha_n | n < \omega \rangle$ from *B* with $\alpha_0 > \beta$. Thus $\alpha := \sup_{n < \omega} \alpha_n$ satisfies $\alpha \in C^B$.

For the sake of this proof, fix ω_1 many distinct functions $\{r_\alpha \mid \alpha < \omega_1\} \subseteq \omega_2$. For every $Z \subseteq \omega_1$, $n < \omega$ and $g: n \to 2$, denote $B_q^Z := \{\alpha \in Z \mid g \subseteq r_\alpha\}$.

Corollary 3.3. For any $Z \subseteq \omega_1$, the following set is a club:

club.

 $C_Z := \left\{ \delta < \omega_1 \mid \forall g \in {}^{<\omega_2} \left((B_g^Z \subseteq \delta) \text{ or } (|B_g^Z| = \aleph_1 \text{ and } \delta = \sup(B_g^Z \cap \delta)) \right) \right\}.$ Proof. Since $C_Z = \bigcap_{g \in {}^{<\omega_2}} C^{B_g^Z}$ and the countable intersection of clubs is a

¹For a function g and a set $A \subseteq \text{dom}(g)$, $g^{*}A$ denotes the set $\{g(a) \mid a \in A\}$.

Theorem 3.4. There exists a function $f : [\omega_1]^2 \to \omega_1$ such that $f''[Z]^2$ contains a club for any unbounded $Z \subseteq \omega_1$.

Proof. For each $\alpha < \omega_1$, by $|\alpha| \leq \aleph_0$, let us fix some injection $e_\alpha : \alpha \to \omega$. For any $\alpha < \beta < \omega_1$, let:

$$\Delta(\alpha, \beta) := \min\{n < \omega \mid r_{\alpha}(n) \neq r_{\beta}(n)\},\$$

$$\Gamma(\alpha, \beta) := \{\gamma < \beta \mid e_{\beta}(\gamma) \le \Delta(\alpha, \beta)\} \setminus \alpha.$$

Thus $\Gamma(\alpha, \beta) \subseteq [\alpha, \beta)$. If $\Gamma(\alpha, \beta)$ is empty, let $f(\alpha, \beta) := 0$, otherwise, let $f(\alpha, \beta) := \min \Gamma(\alpha, \beta)$. We claim that $C_Z \subseteq f[Z]$ for any unbounded $Z \subseteq \omega_1$.

Indeed, fix an unbounded $Z \subseteq \omega_1$ and some $\delta \in C_Z$. Since Z is unbounded, let us pick an arbitrary $\beta \in Z$ satisfying $\beta > \delta$. We now aim at finding some $\alpha < \beta$ with $\alpha \in Z$ such that $f(\alpha, \beta) = \delta$. Put $n := e_{\beta}(\delta)$, $g := r_{\beta} \upharpoonright n$. Then $g \subseteq r_{\beta}$ and $\beta \in B_g^Z$. In particular, $B_g^Z \not\subseteq \delta < \beta$, so by $\delta \in C_Z$, we have $|B_g^Z| = \aleph_1$.

 $\delta \in C_Z$, we have $|B_g^Z| = \aleph_1$. For each $\gamma \in B_g^Z$, put $m_\gamma := \Delta(\gamma, \beta)$. Clearly, $m_\gamma \ge n$. Evidently, there exists some uncountable subset $B \subseteq B_g^Z$ such that m_γ equals to some fixed $m < \omega$ for all $\gamma \in B$.

By shrinking further, we may also assume that $r_{\gamma} \upharpoonright m + 1 = h$ for some fixed $h: m + 1 \to \omega$ for all $\gamma \in B$.

Thus, for B_h^Z , we have $B \subseteq B_h^Z$, i.e., $|B_h^Z| = \aleph_1$, and by $\delta \in C_Z$, we get that $\sup(B_h^Z \cap \delta) = \delta$. Let $F = \{\gamma < \delta \mid e_\beta(\gamma) \leq m\}$. Since e_β is an injection, F is finite and $\sup(F) < \delta$, and so there exists some $\alpha \in B_h^Z \cap \delta$ with $F \subseteq \alpha$. We claim that α works.

Indeed, by $\alpha \in B_h^Z$, we have $\Delta(\alpha, \beta) \ge m \ge n = e_\beta(\delta)$, i.e., $\delta \in \Gamma(\alpha, \beta)$. We need to show that δ is minimal in that sense. Pick $\gamma \in \Gamma(\alpha, \beta)$. Then $e_\beta(\gamma) \le m$. If, in addition, $\gamma < \delta$, then $\gamma \in F$, but then $\gamma < \alpha$, contradicting the fact that $\Gamma(\alpha, \beta) \cap \alpha = \emptyset$.

Lemma 3.5. There exists a function $\psi : \omega_1 \to \omega_1$ such that $\psi[C] = \omega_1$ for any club $C \subseteq \omega_1$.

Proof. Let $\langle S_{\alpha} | \alpha < \omega_1 \rangle$ be a partition of ω_1 into mutually disjoint stationary sets. Now, for $\alpha < \omega_1$, let $\psi(\alpha) = \beta$ where β is the unique ordinal such that $\alpha \in S_{\beta}$.

Finally, notice that if C is a club, then $C \cap S_{\beta} \neq \emptyset$ for all $\beta < \omega_1$. \Box

Corollary 3.6. There exists a function $h : [\omega_1]^2 \to \omega_1$ such that $h''[Z]^2 = \omega_1$ for any unbounded $Z \subseteq \omega_1$.

Proof. Put $h = \psi \circ f$, for some f as in Theorem 3.4 and ψ as in Lemma 3.5.

3.2. The Continuum Hypothesis and $(\omega_2) \rightarrow (\omega_1)_2^2$.

Theorem 3.7 (Erdös-Rado [2], Sierpinski [6]). The following are equivalent:

- (1) *CH*, *i.e.*, $2^{\aleph_0} = \aleph_1$;
- (2) $(\aleph_2) \to (\aleph_1)_2^2$.

Proof. (1) \Rightarrow (2) The simplified proof given here is due to Simpson. Suppose $f : [\omega_2]^2 \to 2$ is given. For every countable $X \subseteq \omega_2$ and $y \in \omega_2 \setminus X$, define $f_y^X : X \to 2$ by letting $f_y^X(x) := f(x, y)$ for all $x \in X$. Notice that by CH, the following set is of cardinality $\leq \aleph_1$:

$$\phi^X := \{ f_y^X \mid y \in \omega_2 \setminus \sup(X) \}.$$

We now define a continuous and increasing chain $\{M_{\alpha} \mid \alpha < \omega_1\} \subseteq [\omega_2]^{\aleph_1}$ by induction on $\alpha < \omega_1$.

Let M_0 be an arbitrary subset of ω_2 of cardinality \aleph_1 . Given M_{α} , by $|[M_{\alpha}]^{\leq \aleph_0}| = \aleph_1$ and the above remark, pick some $M_{\alpha+1} \in [\omega_2]^{\aleph_1}$ extending M_{α} such that $\phi^X = \{f_y^X \mid y \in M_{\alpha+1} \setminus \sup(X)\}$ for every countable $X \subseteq M_{\alpha}$. Finally, let $M = \bigcup_{\alpha < \omega_1} M_{\alpha}$. Since $|M| = \aleph_1$, let us pick some $y^* \in M_{\alpha+1}$.

Finally, let $M = \bigcup_{\alpha < \omega_1} M_{\alpha}$. Since $|M| = \aleph_1$, let us pick some $y^* \in \omega_2 \setminus \sup(M)$. We shall now define an increasing sequence of ordinals $\langle y_{\alpha} | \alpha < \omega_1 \rangle \in \prod_{\alpha < \omega_1} M_{\alpha+1}$.

Let y_0 be an arbitrary element of M_1 . Suppose $X_{\beta} := \{y_{\alpha} \mid \alpha < \beta\}$ is defined for some $\beta < \omega_1$. By the construction of $M_{\beta+1}$, there exists some $y_{\beta} \in M_{\beta+1} \setminus \sup(M_{\beta})$ such that $f_{y_{\beta}}^{X_{\beta}} = f_{y^*}^{X_{\beta}}$, so let y_{β} be such element. This completes the description of the construction.

Let i < 2, put $H_i := \{y_\alpha \mid \alpha < \omega_1, f(y_\alpha, y^*) = i\}$. Notice that if $\alpha < \beta$ and $y_\alpha, y_\beta \in H_i$, then $f(y_\alpha, y_\beta) = f(y_\alpha, y^*) = i$. Consequently, $f''[H_i]^2 = \{i\}$. The proof is complete patience that $\mathfrak{V} \subset (|H| + |H|)$.

The proof is complete noticing that $\aleph_1 \in \{|H_0|, |H_1|\}.$

 $(\neg 1) \Rightarrow (\neg 2)$ Pick $X \subseteq \mathbb{R}$ of cardinality \aleph_2 . Let \leq denote the natural ordering of the real line and let \leq be some well-ordering of X.

Define $f : [X]^2 \to 2$ by letting f(x, y) = 1 iff $\{(x, y), (y, x)\} \cap \leq \cap \trianglelefteq \neq \emptyset$, that is, iff \leq and \trianglelefteq agrees on the relation of x and y. Now assume towards a contradiction that $Y \subseteq X$ is a set of cardinality \aleph_1 , such that $f''[Y]^2 = \{1\}$.²

By thinning out, we may assume that Y has no maximal element, so for all $y \in Y$, define the successor of y to be the minimal element above it:

$$\hat{y} := \min_{\lhd} \{ z \in Y \mid z \neq y, y \trianglelefteq z \}$$

But $y \leq \hat{y}$ implies that $y \leq \hat{y}$, and so $\{(y, \hat{y}) \mid y \in Y\}$ is an uncountable family of mutually-disjoint open intervals of the real line, but this is impossible, because each such interval contains a (distinct) rational point, and there are only countably many rational numbers.

²The other case is handled in the same fashion.

4. The consistency of the negation of Borel's conjecture

Recall that a subset $X \subseteq \mathbb{R}$ is said to be a *null set* iff for every positive $\varepsilon \in \mathbb{R}$ there exists a sequence of open intervals $\langle I_n \mid n < \omega \rangle$ such that $X \subseteq \bigcup_{n < \omega} I_n$ and also $\sum_{n < \omega} |I_n| < \varepsilon$.³

 $X \subseteq \bigcup_{n < \omega} I_n$ and also $\sum_{n < \omega} |I_n| < \varepsilon$.³ A subset $X \subseteq \mathbb{R}$ is said to be a *strongly null set* iff for every sequence of positive real numbers, $\langle \varepsilon_n \mid n < \omega \rangle$, there exists a sequence of open intervals $\langle I_n \mid n < \omega \rangle$ such that $X \subseteq \bigcup_{n < \omega} I_n$ and also $|I_n| < \varepsilon_n$ for all $n < \omega$.

Clearly, any strongly null set is a null set, and any countable subset of \mathbb{R} is strongly null. Also, there are well-known examples of uncountable null sets, but what about uncountable strongly null sets?

Emile Borel conjectured that a set is strongly null iff it is countable. In [4], Richard Laver proved the consistency of this conjecture. In this section, we shall include a proof for the consistency of the negation of Borel's conjecture.

This result is considered as folklore, but its ingredients are due to Luzin.

Theorem. $CH \Rightarrow$ There exists an uncountable strongly null set.

Proof. By $2^{\aleph_0} = \aleph_1$, let $\mathcal{F} = \{F_\alpha \mid \alpha < \omega_1\}$ be an enumeration of all closed nowhere dense subsets of \mathbb{R} .

Fix $\alpha < \omega_1$. Since α is countable, by Baire category theorem, $\bigcup_{\beta < \alpha} F_\beta \neq \mathbb{R}$, so let us pick some $x_\alpha \in \mathbb{R} \setminus \bigcup_{\beta < \alpha} F_\beta$.

Let $X := \{x_{\alpha} \mid \alpha < \omega_1\}$. Clearly, for all $\alpha < \omega_1, X \cap F_{\alpha} \subseteq \{x_{\beta} \mid \beta < \alpha\}$. In particular, since all singletons are in \mathcal{F} , the set X is uncountable.

Finally, suppose $\langle \varepsilon_n \mid n < \omega \rangle$ is a sequence of positive real numbers. Let $\{q_{2n} \mid n < \omega\}$ be some enumeration of \mathbb{Q} . For all $n < \omega$, pick an interval I_{2n} such that $q_{2n} \in I_{2n}$ and $|I_{2n}| < \varepsilon_{2n}$.

Consider the set $G = \bigcup_{n < \omega} I_{2n}$; this is an open and dense set, and hence there exists some $\alpha < \omega_1$ such that $\mathbb{R} \setminus G = F_{\alpha}$. By $|X \cap F_{\alpha}| \leq \aleph_0$, let $\{y_{2n+1} \mid n < \omega\}$ be some enumeration of $X \setminus G$. For all $n < \omega$, pick an interval I_{2n+1} such that $y_{2n+1} \in I_{2n+1}$ and $|I_{2n+1}| < \varepsilon_{2n+1}$.

Clearly, $X \subseteq \bigcup_{n < \omega} I_n$.

³Here, |I| denotes the diameter of the open interval I.

5. Square Sequences

Definition 5.1. We say that a stationary set S carries a square sequence type-bounded by η iff there exists a collection $\{C_{\alpha} \mid \alpha \in S\}$ such that for all limit $\alpha \in S$:

- (1) C_{α} is a club subset of S, and $\operatorname{otp}(C_{\alpha}) \leq \eta$;
- (2) if $\beta \in \operatorname{acc}(C_{\alpha})$, then $\beta \in S$ and $C_{\beta} = C_{\alpha} \cap \beta$.

Here, $\operatorname{acc}(C_{\alpha}) := \{\beta \in C_{\alpha} \mid \sup(C_{\alpha} \cap \beta) = \beta\}$. Jensen's square principle, \Box_{λ} , is the assertion that λ^+ carries a partial square sequence. Note that \Box_{ω} holds trivially.

In this section, we would like to present Shelah's results that, quite often, many stationary subsets of successor cardinals carries a partial square sequence. For this, we first need the following well-known lemma.

Theorem 5.2 (Engelking-Karłowicz). For cardinals $\kappa \leq \lambda \leq \mu \leq 2^{\lambda}$, the following are equivalent:

- (1) $\lambda^{<\kappa} = \lambda;$
- (2) there exists a collection of functions, $\langle f_i : \mu \to \lambda \mid i < \lambda \rangle$, such that for every $X \in [\mu]^{<\kappa}$ and every function $f : X \to \lambda$, there exists some $i < \lambda$ with $f \subseteq f_i$.

Proof. (2) \Rightarrow (1) Suppose $\langle f_i : \mu \to \lambda \mid i < \lambda \rangle$ is a given collection. Then $|\{f_i \mid \theta \mid i < \lambda, \theta < \kappa\}| < \lambda < \lambda^{<\kappa},$

so there must exists some $f \in {}^{<\kappa}\lambda$ with $f \not\subseteq f_i$ for all $i < \lambda$.

 $(1) \Rightarrow (2)$ The simplified proof here is due to Shelah. Put:

$$W := \{ (a, \mathcal{A}, g) \mid a \in [\lambda]^{<\kappa}, \mathcal{A} \in [a]^{<\kappa}, g \in {}^{\mathcal{A}}\lambda \}.$$

Then $|W| = \lambda^{<\kappa} = \lambda$, and we may fix an enumeration

$$W = \{ (a_i, \mathcal{A}_i, g_i) \mid i < \lambda \}.$$

By $\mu \leq 2^{\lambda}$, let $\langle B_{\alpha} \mid \alpha < \mu \rangle$ be a sequence of distinct subsets of λ . For all $i < \lambda$, we now define $f_i : \mu \to \lambda$, by letting for all $\alpha < \mu$:

$$f_i(\alpha) = \begin{cases} g(a_i \cap B_\alpha), & a_i \cap B_\alpha \in \mathcal{A}_i \\ 0, & \text{otherwise} \end{cases}$$

.

Finally, suppose that a set $X \in [\mu]^{<\kappa}$ and a function $f: X \to \lambda$ are given. For all distinct $\alpha, \beta \in X$, pick $x(\alpha, \beta) \in B_{\alpha} \Delta B_{\beta}$. Put $a = \{x(\alpha, \beta) \mid \alpha, \beta \in X, \alpha \neq \beta\}$. Then, $|a| < \kappa$ and for all distinct $\alpha, \beta \in X$, we have $a \cap B_{\alpha} \neq a \cap B_{\beta}$. It follows that $|\mathcal{A}| = |a|$, where $\mathcal{A} := \{a \cap B_{\alpha} \mid \alpha \in X\}$. It also follows that we may well-define a function $g: \mathcal{A} \to \lambda$ by letting:

$$g(a \cap B_{\alpha}) := f(\alpha), \quad (\alpha \in X).$$

Pick $i < \lambda$ such that $(a, \mathcal{A}, g) = (a_i, \mathcal{A}_i, g_i)$. Then, $f \subseteq f_i$.

Theorem 5.3 (Shelah, [?]). Suppose $\kappa \leq \lambda$ are cardinals such that $\lambda^{<\kappa} = \lambda$. Denote $T := \{\alpha < \lambda^+ \mid \omega \leq \operatorname{cf}(\alpha) < \kappa\}$; then T is the union of λ many sets, each carrying a partial square sequence type-bounded by κ . That is, there exists sequences $\langle \langle C^i_{\alpha} \mid \alpha \in S_i \rangle \mid i < \lambda \rangle$ such that:

(1) $\bigcup_{i < \lambda} S_i = T;$ (2) for all $i < \lambda$ and $\alpha \in S_i$: (a) C^i_{α} is a club subset of α , with $\operatorname{otp}(C^i_{\alpha}) < \kappa;$ (b) $C^i_{\beta} = C^i_{\alpha} \cap \beta$ for all $\beta \in \operatorname{acc}(C^i_{\alpha}).$

Proof. By $\lambda^{<\kappa} = \lambda$, let us fix for each $\alpha < \lambda^+$, an enumeration $\{A^j_{\alpha} \mid j < \lambda\}$ of $[\alpha]^{<\kappa}$. By $\lambda^{<\kappa} = \lambda$, and the Engelking-Karłowicz theorem, we may pick a collection of functions $\langle f_i : \lambda^+ \to \lambda \mid i < \lambda \rangle$ such that for every $X \in [\lambda^+]^{<\kappa}$ and every function $f : X \to \lambda$, there exists some $i < \lambda$ with $f \subseteq f_i$.

For each $i < \lambda$ and $\alpha \in T$, denote $C^i_{\alpha} := A^{f_i(\alpha)}_{\alpha}$.

Now, for each $i < \lambda$, put:

$$S_i := \{ \alpha \in T \mid C_{\alpha}^i \text{ satisfies } 2(a) + 2(b) \}.$$

Finally, we fix some $\alpha \in T$, and show that $\alpha \in \bigcup_{i < \lambda} S_i$.

Let D_{α} be a club subset of α with $\operatorname{otp}(D_{\alpha}) < \kappa$. Consider the function $f: D_{\alpha} \cup \{\alpha\} \to \lambda$ defined by:

$$f(\beta) := \min\{j < \lambda \mid D_{\alpha} \cap \beta = A_{\beta}^{j}\}, \quad (\beta \in D_{\alpha} \cup \{\alpha\}).$$

Pick $i < \lambda$ such that $f \subseteq f_i$, then for all $\beta \in D_\alpha \cup \{\alpha\}$, we have:

$$D_{\alpha} \cap \beta = A_{\beta}^{f(\beta)} = A_{\beta}^{f_i(\beta)} = C_{\beta}^i,$$

and hence $\alpha \in S_i$.

Corollary 5.4. If $\lambda^{<\lambda} = \lambda$, then $\{\alpha < \lambda^+ \mid \omega \leq cf(\alpha) < \lambda\}$ is the union of λ many sets, each carrying a partial square sequence type-bounded by λ .

In future versions of this section, we shall be presenting Shelah's improvements to the preceding corollary.

12

References

- J. Baumgartner and A. Hajnal, A proof (involving Martin's axiom) of a partition relation, Fund. Math. 78, 193–203, 1973.
- [2] P. Erdös and R. Rado, A partition calculus in set theory, BAMS 62, 427–489, 1956.
- [3] P. Komjáth, Shelah's proof of diamond, note, 2008.
- [4] R. Laver, On the consistency of Borel's conjecture, Acta Math. 137(3-4): 151–169, 1977.
- [5] A. Rinot, A relative of the approachability ideal, diamond and non-saturation, 32 pages, submitted for publication, (2009).
- [6] W. Sierpiński, Sur un problème de la théorie des relations, Annali della Scuola Normale Superiore de Pisa (2)2, 285–287, 1933.
- [7] J. Silver, On the singular cardinals problem , Proc. 1974 Intl Congress of Mathematicians.
- [8] S. Shelah, *Diamonds*, preprint of paper #922, 2007.
- [9] R. Solovay, Strongly Compact Cardinals and the GCH, In Proceedings of the Tarski Symposium, Proceedings of Symposia in Pure Mathematics 25, American Mathematical Society, Providence (1974), 365-372.
- [10] S. Todorčević, Partitioning pairs of countable ordinals, Acta Math. 159(3-4): 261– 294, 1987.
- [11] D. Velleman, Partitioning pairs of countable sets of ordinals, J. Symbolic Logic 55(3): 1019–1021, 1990.
- [12] M. Zeman, Some applications of a recent argument of shelah on diamonds, preprint, 2008.

SCHOOL OF MATHEMATICAL SCIENCES, TEL AVIV UNIVERSITY, TA 69978, ISRAEL URL: http://www.tau.ac.il/~rinot