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ASSAF RINOT

Abstract. This note is a compilation of several results in set theory
which has surprisingly short proofs. From time to time (e.g., whenever
I write down notes for my tutor lectures), more results will be added to
this compilation.
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1. Diamond principles

1.1. Jensen’s diamond is (nearly) a cardinal arithmetic statement.
Recall that for a regular uncountable cardinal θ and a stationary subset
S ⊆ θ, ♦S is said to hold iff there exists a collection {Sδ | δ ∈ S} such that
for any Z ⊆ θ, the set {δ ∈ S | Sδ = Z ∩ δ} is stationary.

Evidently, if λ is a cardinal and {Sδ | δ ∈ λ+} is a collection witnessing
♦λ+ , then [λ+]≤λ = {Z ⊆ λ+ | |Z| ≤ λ} ⊆ {Sδ | δ ∈ λ+}. In particular,
♦λ+ implies 2λ = λ+. The result of this section deals with the inverse
implication and has been established by Shelah [8]. Soon afterwards, Péter
Komjáth found a more friendly proof [3], and sometime later, we found
a considerably shorter proof which avoids the first ingredient of the two
ingredients of Shelah’s proof. The next proof is extracted from [5].

Theorem (Shelah). Suppose λ is a cardinal satisfying 2λ = λ+.
Then ♦S holds for any stationary S ⊆ {δ < λ+ | cf(δ) 6= cf(λ)}.

Proof. For all δ < λ+, let {Aiδ | i < cf(λ)} ⊆ [δ×δ]<λ be an increasing chain
converging to δ × δ. By 2λ = λ+, let {Xβ | β < λ+} be an enumeration of
[λ × λ × λ+]≤λ. For all (i, τ) ∈ λ × λ and X ⊆ λ × λ × λ+, let πi,τ (X) :=
{γ < λ+ | (i, τ, γ) ∈ X}. For a set B ⊆ λ+ × λ+ and (i, τ) ∈ λ× λ, denote:

(B)i,τ :=
⋃
{πi,τ (Xβ) | (α, β) ∈ B for some α}.

Now, suppose S ⊆ {δ < λ+ | cf(δ) 6= cf(λ)} is a given stationary set.

Claim. There exists (i, τ) ∈ λ× λ, and for all δ ∈ S, there exists Bδ ⊆ Aiδ
such that 〈(Bδ)i,τ | δ ∈ S〉 is a ♦S sequence.

Proof. Suppose not, we build by recursion on τ < λ, three sequences:

(I) 〈{Zi
τ | i < λ} | τ < λ〉;

(II) 〈{Ci
τ | i < λ} | τ < λ〉;

(III) 〈{Aiδ(τ) | i < λ, δ ∈ S ∩ Ci
τ} | τ < λ〉.

Base case, τ = 0. By the hypothesis, for all i < λ, 〈(Aiδ)i,0 | δ ∈ S〉 is not
a ♦S sequence, so pick a set Zi

0 ⊆ λ+ and a club Ci
0 ⊆ λ+ witnessing that.

Namely, fixing i < λ and δ ∈ S ∩ Ci
0, we have:

Zi
0 ∩ δ 6= (Aiδ)i,0 =

⋃
{πi,0(Xβ) | (α, β) ∈ Aiδ for some α}.

In particular, either there exists some (α, β) ∈ Aiδ such that Zi
0 ∩ α 6=

πi,0(Xβ), or sup{α < δ | (α, β) ∈ Aiδ} < α. In the latter case, put Aiδ(0) :=
Aiδ. In the former case, pick (α, β) ∈ Aiδ with Zi

0 ∩ α 6= πi,0(Xβ) and let
Aiδ(0) := Aiδ \ {(α, β)}.

Now, assume that the three sequences are defined up to some τ . Let
D :=

⋂
{Ci

ε | ε < τ, i < λ}. For all δ ∈ D ∩ S, and i < λ, put Bi
δ :=⋂

{Aiδ(ε) | ε < τ}. By the hypothesis, for all i < λ, 〈(Bi
δ)i,τ | δ ∈ S ∩D〉 is

not a ♦S sequence, so pick a set Zi
τ ⊆ λ+ and a club Ci

τ ⊆ D witnessing
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that. As before, for all i < λ and δ ∈ S ∩ Ci
τ , put Aiδ(τ) := Bi

δ in the case
that sup{α < δ | (α, β) ∈ Bi

δ} < δ, or else, let Aiδ(τ) := Bi
δ \ {(α, β)} for

some (α, β) ∈ Bi
δ satisfying Zi

τ ∩ α 6= πi,τ (Xβ).
This completes the construction. To meet a contradiction, put Z :=

{(i, τ, γ) | i < λ, τ < λ, γ ∈ Zi
τ} and define a function f : λ+ → λ+ by

letting:

f(α) := min{β < λ+ | Z ∩ (λ× λ× α) = Xβ}, (α < λ+).

Since {δ < λ+ | f [δ] ⊆ δ} is a club, pick δ ∈ S∩
⋂
τ<λ

⋂
i<λC

i
τ with f [δ] ⊆ δ.

Since f � δ ⊆ δ × δ =
⋃
i<cf(λ)A

i
δ, let us define g : δ → cf(λ) as follows:

g(α) = min{i < cf(λ) | (α, f(α)) ∈ Aiδ}, (α < δ).

As δ = g−1[cf(λ)] and cf(δ) 6= cf(λ), there must exist some i∗ < cf(λ)
such that H := g−1[i∗] is cofinal in δ. By Ai

∗

δ ⊇
⋃
i<i∗ A

i
δ, this means that

f � H ⊆ Ai
∗

δ . Recall that by definition of f , if α ∈ H, and β = f(α), then
Zi∗
τ ∩ α = πi∗,τ (Xβ) for all τ < λ. It now follows from f � H ⊆ Ai

∗

δ and
the definition of the construction that f � H ⊆ Ai

∗

δ (τ) for all τ < λ. In
particular, sup{α < δ | (α, β) ∈ Ai∗δ (τ)} ≥ sup(H) = δ for all τ < λ, and
hence 〈Ai∗δ (τ) | τ < λ〉 must be a strictly decreasing sequence of subsets of
Ai

∗

δ , contradicting the fact that |Ai∗δ | < λ. �

�

It is worth mentioning that for stationary subsets of {δ < λ+ | cf(δ) =
cf(λ)}, there are consistency results concerning the failure of diamond. For
instance, Jensen proved that CH is consistent with ¬♦ω1 , and Shelah estab-
lished the consistency of GCH with ¬♦S for S = {δ < ℵ2 | cf(δ) = ℵ1}. As
for subsets of {δ < λ+ | cf(δ) = cf(λ)}, where λ is singular — the situation
here is subtle, and we refer the interested reader to the following survey
presentation:

http://www.tau.ac.il/~rinot/rinot_best18.pdf

1.2. Magidor’s notion of silly diamond. In order to prove Corollary 1.3
below, Magidor have introduced the notion of silly diamond, where instead
of guessing subsets of λ+, we are only required to guess subsets of λ.

Theorem 1.1 (Magidor). Suppose M ⊆ V is model of ZFC, λ is a cardinal
in V , P(λ)M = P(λ)V and 2λ = λ+.

Then for every S ⊆ λ+ in M which is stationary in V , there exists a
sequence in M which is a silly diamond sequence over S for V , that is,
there exists a sequence ~A = 〈Aδ | δ ∈ S〉 such that:

(1) ~A ∈M ;
(2) V |= ∀X ⊆ λ ({δ ∈ S | Aδ = X} is stationary).
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Proof. Work in M . Fix a an enumeration {Yα | α < λ+} of P(λ × λ). For
all δ < λ+, let {Y i

δ | i < λ} be some enumeration of {Yα | α < δ}. For all
δ ∈ S, put Aiδ = {α < λ | (i, α) ∈ Y i

δ }.

Claim 1.2. There exists some i < λ such that ~A = 〈Aiδ | δ ∈ S〉 works.

Proof. Suppose not. Work in V . Then, for all i < λ, we may pick a set
X i ⊆ λ and a club Ci ⊆ λ+ such that Aiδ 6= X i for all δ ∈ S ∩ Ci. Put
Y :=

⋃
i<λ{i}×X i, and find α < λ+ such that Y = Yα. Fix δ ∈ S∩

⋂
i<λC

i

with δ > α, and fix j < λ such that Y = Y j
δ . Then in particular, Ajδ =

{α < λ | (j, α) ∈ Y } = Xj, a contradiction to δ ∈ S ∩ Cj. �

�

Corollary 1.3. Suppose M ⊆ V is model of ZFC, λ is a cardinal in V ,
P(λ)M = P(λ)V and 2λ = λ+.

Then, in M there exists a partition of {δ < λ+ | cf(δ) = cf(λ)} into λ+

many V -stationary sets.

Proof. Put S := {δ < λ+ | cf(δ) = cf(λ)}. Notice that by P(λ)M = P(λ)V ,
we have that M and V agrees on the cardinal structure up to λ+, that
S ∈M , and that S is stationary in V .

Now, let 〈Aδ | δ ∈ S〉 be a silly diamond sequence for S given by the
preceding theorem. For all X ⊆ λ, denote SX := {δ ∈ S | Aδ = X}. Then
SX is stationary in V , and the partition S =

⊎
{SX | X ⊆ λ} lies in M . �

Andrés Caicedo pointed out that the preceding corollary is actually a
well-known consequence of a theorem by Erdös, Hajnal and Milner. Yet, it
appears that Magidor was unaware of it.

We also thank Andrés Caicedo for communicating to us a result by Paul
Larson, showing that the hypothesis “2λ = λ+” in the preceding corollary
cannot be dropped.
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2. SCH holds above a strongly-compact cardinal

Fix a regular cardinal λ. Recall that for a cardinal κ, Pκ(λ) denotes the
family of subsets of λ of cardinality less than κ. An ultrafilter U over Pκ(λ)
is fine iff for every α < λ, the ‘final segment’ α̂ := {X ∈ Pκ(λ) | α ∈ X} is
a member of U .

Definition 2.1. A cardinal κ is λ-strongly compact iff there exists a κ-
complete fine ultrafilter over Pκ(λ).

A cardinal κ is strongly compact iff it is λ-compact for all cardinals λ ≥ κ.

This section will be dedicated to proving the following theorem from [9]:

Theorem (Solovay). The Singular Cardinal Hypothesis (SCH) holds above
the first strongly compact cardinal (if exists).

By a celebrated result of Silver from [7], to show that SCH holds above a
cardinal κ, it suffices to prove that λℵ0 = λ for all regular λ ≥ κ. The latter
will be established in this section. The simplified proof is due to ???

Lemma 2.2. Suppose κ is a λ-strongly compact cardinal, then every collec-
tion of less than κ many stationary subsets of {β < λ | cf(β) < κ} mutually
reflects at some δ < λ of cofinality < κ.

Proof. Let U is an ultrafilter witnessing that κ is λ-strongly compact. Con-
sider Pκ(λ)V/U , an ultrapower of the universe. Since U is κ-complete, the ul-
trapower is well-founded, and we may identify it with its transitive collapse,
M . For each x in V , let Cx denote the constant function Cx : Pκ(λ)→ {x}.
Now, defining j : V → M by letting j(x) := [Cx]U for all x ∈ V yields an
elementary embedding from the universe to a transitive proper class.

Consider the identity function, id : Pκ(λ) → Pκ(λ). Since {X ∈ Pκ(λ) |
| id(X)| < Cκ(X)} = Pκ(λ) ∈ U , we get that |[id]U | < j(κ). Since U is
fine, for all α < λ, we have {X ∈ Pκ(λ) | Cα(X) ∈ id(X)} ∈ U , and hence
j(α) ∈ [id]U . Thus j“λ ⊆ [id]U and |j“λ| < j(κ). Put δ := sup(j“λ).
So cf(δ) < j(κ). Also, since sup(X) < λ for all X ∈ Pκ(λ), we get from
j“λ ⊆ [id]U that δ < j(λ).

Fix µ < κ and suppose S = {Sα | α < µ} is a collection of stationary
subsets of {β < λ | cf(β) < κ}. Since U is κ-complete, we get that j � κ is
the identity function. In particular, j(µ) = µ and j(S) = {j(Sα) | α < µ}.

Let α < µ be arbitrary. We have j“Sα ⊆ j(Sα) and actually j“Sα ⊆
j(Sα) ∩ δ. Suppose now C is a club in δ. Since j is elementary and j � κ
is the identity function, we get that j(β) = sup(j“β) for every limit ordinal
β with cf(β) < κ. So, j“λ is a κ-club in δ, and hence C ∩ j“λ is a κ-club.
Let D ⊆ λ in V be such that j“D = C ∩ j“λ. Then D is a κ-club. Since
Sα is stationary, and β ∈ Sα ⇒ cf(β) < κ, Sα must meet the κ-club D. So
Sγ ∩D 6= ∅, and hence j(Sα) ∩ C 6= ∅.
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Thus, we have shown that:

M |= ∃δ < j(λ) (cf(δ) < j(κ),∀S ∈ j(S)(S ∩ δ is stationary)) .

Consequently:

V |= ∃δ < λ (cf(δ) < κ,∀S ∈ S(S ∩ δ is stationary)) . �

Corollary 2.3. Suppose λ ≥ κ are regular cardinals.
If κ is strongly compact, then λℵ0 = λ.

Proof. Clearly, it suffices to prove that λ<κ = λ. Let 〈Sα | α < λ〉 be a
partition of {α < λ | cf(α) = ω} into λ many mutually-disjoint stationary
sets. For each δ < λ, consider the set Aδ = {α < λ | Sα ∩ δ is stationary }.
Clearly, if δ < λ and cf(δ) < κ, then there exists a club subset of δ of
cardinality < κ. Consequently, |Aδ| < κ for such δ (because the stationary
subsets are mutually-disjoint), and also |P(Aδ)| < κ, because κ is strongly
inaccessible.

Finally, by the previous lemma, for all a ∈ [λ]<κ, there exists some δ < λ
such that a ⊆ Aδ. Thus, [λ]<κ ⊆

⋃
{P(Aδ) | δ < λ, cf(δ) < κ}, and so

λ<κ = λ. �
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3. Partition relations

Recall the arrow notation: for ordinals κ ≤ λ, (λ) → (κ)2
2 asserts that

for any function f : [λ]2 → 2, there exists some H ⊆ λ of order-type κ such
that |f“[H]2| = 1.1

A well-known theorem of Frank Ramsey states that (ω) → (ω)2
2, and its

proof can be found in any relevant textbook. Consequently, (ω1)→ (ω)2
2.

In the next subsection it is shown that (ω1) → (ω1)
2
2 does not hold, and

actually a strong negation of it, due to Todorcevic, holds.
So, how about (ω2)→ (ω1)

2
2? In subsection 3.2 it is proved that the latter

happens to be equivalent to the Continuum Hypothesis.

3.1. A strong negation of (ω1) → (ω1)
2
2. This subsection will be dedi-

cated to proving the following somewhat surprising theorem.

Theorem (Todorčević, [10]). There exists a coloring h : [ω1]
2 → ω1 such

that every uncountable Z ⊆ ω1 satisfies h“[Z]2 = ω1.

The simplified presentation given here is due to Dan Velleman [11].

Definition 3.1. For every B ⊆ ω1, denote:

CB := {δ < ω1 | B ⊆ δ} ∪ {δ < ω1 | |B| = ℵ1, δ = sup(B ∩ δ)}.

Lemma 3.2. For all B ⊆ ω1, CB is a club.

Proof. Fix B ⊆ ω1. To see that CB is closed, suppose 〈αn | n < ω〉 is an
increasing sequence of elements of CB, and let α := supn<ω αn. If B ⊆ α,
then we are done. Otherwise, B 6⊆ αn for all n < ω, then |B| = ℵ1, and
αn = sup(B ∩ αn) for all n < ω. To see that α = sup(B ∩ α), we need to
show that for all β < α there exists some γ ∈ B ∩ α above β. Now, simply
notice that if β < α, then there exists some n < ω with β < αn < α and by
αn = sup(B ∩ αn), we may find some γ ∈ B ∩ αn above β.

To see that CB is unbounded, pick β < ω1. If B is countable, then we
may find some δ < ω1 such that B ⊆ δ, and then β+δ ∈ CB as well. If B is
uncountable, then just pick an increasing sequence of elements 〈αn | n < ω〉
from B with α0 > β. Thus α := supn<ω αn satisfies α ∈ CB. �

For the sake of this proof, fix ω1 many distinct functions {rα | α < ω1} ⊆
ω2. For every Z ⊆ ω1, n < ω and g : n→ 2, denote BZ

g := {α ∈ Z | g ⊆ rα}.

Corollary 3.3. For any Z ⊆ ω1, the following set is a club:

CZ :=
{
δ < ω1 | ∀g ∈ <ω2

(
(BZ

g ⊆ δ) or (|BZ
g | = ℵ1 and δ = sup(BZ

g ∩ δ))
)}
.

Proof. Since CZ =
⋂
g∈<ω2C

BZg and the countable intersection of clubs is a
club. �

1For a function g and a set A ⊆ dom(g), g“A denotes the set {g(a) | a ∈ A}.
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Theorem 3.4. There exists a function f : [ω1]
2 → ω1 such that f“[Z]2

contains a club for any unbounded Z ⊆ ω1.

Proof. For each α < ω1, by |α| ≤ ℵ0, let us fix some injection eα : α→ ω.
For any α < β < ω1, let:

∆(α, β) := min{n < ω | rα(n) 6= rβ(n)},

Γ(α, β) := {γ < β | eβ(γ) ≤ ∆(α, β)} \ α.

Thus Γ(α, β) ⊆ [α, β). If Γ(α, β) is empty, let f(α, β) := 0, otherwise,
let f(α, β) := min Γ(α, β). We claim that CZ ⊆ f [Z] for any unbounded
Z ⊆ ω1.

Indeed, fix an unbounded Z ⊆ ω1 and some δ ∈ CZ . Since Z is un-
bounded, let us pick an arbitrary β ∈ Z satisfying β > δ. We now aim at
finding some α < β with α ∈ Z such that f(α, β) = δ. Put n := eβ(δ),
g := rβ � n. Then g ⊆ rβ and β ∈ BZ

g . In particular, BZ
g 6⊆ δ < β, so by

δ ∈ CZ , we have |BZ
g | = ℵ1.

For each γ ∈ BZ
g , put mγ := ∆(γ, β). Clearly, mγ ≥ n. Evidently, there

exists some uncountable subset B ⊆ BZ
g such that mγ equals to some fixed

m < ω for all γ ∈ B.
By shrinking further, we may also assume that rγ � m + 1 = h for some

fixed h : m+ 1→ ω for all γ ∈ B.
Thus, for BZ

h , we have B ⊆ BZ
h , i.e., |BZ

h | = ℵ1, and by δ ∈ CZ , we
get that sup(BZ

h ∩ δ) = δ. Let F = {γ < δ | eβ(γ) ≤ m}. Since eβ is an
injection, F is finite and sup(F ) < δ, and so there exists some α ∈ BZ

h ∩ δ
with F ⊆ α. We claim that α works.

Indeed, by α ∈ BZ
h , we have ∆(α, β) ≥ m ≥ n = eβ(δ), i.e., δ ∈ Γ(α, β).

We need to show that δ is minimal in that sense. Pick γ ∈ Γ(α, β). Then
eβ(γ) ≤ m. If, in addition, γ < δ, then γ ∈ F , but then γ < α, contradicting
the fact that Γ(α, β) ∩ α = ∅. �

Lemma 3.5. There exists a function ψ : ω1 → ω1 such that ψ[C] = ω1 for
any club C ⊆ ω1.

Proof. Let 〈Sα | α < ω1〉 be a partition of ω1 into mutually disjoint station-
ary sets. Now, for α < ω1, let ψ(α) = β where β is the unique ordinal such
that α ∈ Sβ.

Finally, notice that if C is a club, then C ∩ Sβ 6= ∅ for all β < ω1. �

Corollary 3.6. There exists a function h : [ω1]
2 → ω1 such that h“[Z]2 = ω1

for any unbounded Z ⊆ ω1.

Proof. Put h = ψ ◦ f , for some f as in Theorem 3.4 and ψ as in Lemma
3.5. �
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3.2. The Continuum Hypothesis and (ω2)→ (ω1)
2
2.

Theorem 3.7 (Erdös-Rado [2], Sierpinski [6]). The following are equivalent:

(1) CH, i.e., 2ℵ0 = ℵ1;
(2) (ℵ2)→ (ℵ1)

2
2.

Proof. (1)⇒(2) The simplified proof given here is due to Simpson. Suppose
f : [ω2]

2 → 2 is given. For every countable X ⊆ ω2 and y ∈ ω2 \X, define
fXy : X → 2 by letting fXy (x) := f(x, y) for all x ∈ X. Notice that by CH,
the following set is of cardinality ≤ ℵ1:

φX := {fXy | y ∈ ω2 \ sup(X)}.
We now define a continuous and increasing chain {Mα | α < ω1} ⊆ [ω2]

ℵ1

by induction on α < ω1.
Let M0 be an arbitrary subset of ω2 of cardinality ℵ1. Given Mα, by

|[Mα]≤ℵ0| = ℵ1 and the above remark, pick some Mα+1 ∈ [ω2]
ℵ1 extending

Mα such that φX = {fXy | y ∈Mα+1\sup(X)} for every countable X ⊆Mα.
Finally, let M =

⋃
α<ω1

Mα. Since |M | = ℵ1, let us pick some y∗ ∈
ω2 \ sup(M). We shall now define an increasing sequence of ordinals 〈yα |
α < ω1〉 ∈

∏
α<ω1

Mα+1.
Let y0 be an arbitrary element of M1. Suppose Xβ := {yα | α < β} is

defined for some β < ω1. By the construction of Mβ+1, there exists some

yβ ∈Mβ+1 \ sup(Mβ) such that f
Xβ
yβ = f

Xβ
y∗ , so let yβ be such element. This

completes the description of the construction.
Let i < 2, putHi := {yα | α < ω1, f(yα, y

∗) = i}. Notice that if α < β and
yα, yβ ∈ Hi, then f(yα, yβ) = f(yα, y

∗) = i. Consequently, f“[Hi]
2 = {i}.

The proof is complete noticing that ℵ1 ∈ {|H0|, |H1|}.
(¬1) ⇒ (¬2) Pick X ⊆ R of cardinality ℵ2. Let ≤ denote the natural

ordering of the real line and let E be some well-ordering of X.
Define f : [X]2 → 2 by letting f(x, y) = 1 iff {(x, y), (y, x)}∩ ≤ ∩E 6= ∅,

that is, iff ≤ and E agrees on the relation of x and y. Now assume towards a
contradiction that Y ⊆ X is a set of cardinality ℵ1, such that f“[Y ]2 = {1}.2

By thinning out, we may assume that Y has no maximal element, so for
all y ∈ Y , define the successor of y to be the minimal element above it:

ŷ := min
E
{z ∈ Y | z 6= y, y E z}.

But yEŷ implies that y ≤ ŷ, and so {(y, ŷ) | y ∈ Y } is an uncountable family
of mutually-disjoint open intervals of the real line, but this is impossible,
because each such interval contains a (distinct) rational point, and there
are only countably many rational numbers. �

2The other case is handled in the same fashion.
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4. The consistency of the negation of Borel’s conjecture

Recall that a subset X ⊆ R is said to be a null set iff for every positive
ε ∈ R there exists a sequence of open intervals 〈In | n < ω〉 such that
X ⊆

⋃
n<ω In and also

∑
n<ω |In| < ε.3

A subset X ⊆ R is said to be a strongly null set iff for every sequence of
positive real numbers, 〈εn | n < ω〉, there exists a sequence of open intervals
〈In | n < ω〉 such that X ⊆

⋃
n<ω In and also |In| < εn for all n < ω.

Clearly, any strongly null set is a null set, and any countable subset of R
is strongly null. Also, there are well-known examples of uncountable null
sets, but what about uncountable strongly null sets?

Émile Borel conjectured that a set is strongly null iff it is countable. In [4],
Richard Laver proved the consistency of this conjecture. In this section, we
shall include a proof for the consistency of the negation of Borel’s conjecture.

This result is considered as folklore, but its ingredients are due to Luzin.

Theorem. CH ⇒ There exists an uncountable strongly null set.

Proof. By 2ℵ0 = ℵ1, let F = {Fα | α < ω1} be an enumeration of all closed
nowhere dense subsets of R.

Fix α < ω1. Since α is countable, by Baire category theorem,
⋃
β<α Fβ 6=

R, so let us pick some xα ∈ R \
⋃
β<α Fβ.

Let X := {xα | α < ω1}. Clearly, for all α < ω1, X ∩ Fα ⊆ {xβ | β < α}.
In particular, since all singletons are in F , the set X is uncountable.

Finally, suppose 〈εn | n < ω〉 is a sequence of positive real numbers. Let
{q2n | n < ω} be some enumeration of Q. For all n < ω, pick an interval
I2n such that q2n ∈ I2n and |I2n| < ε2n.

Consider the set G =
⋃
n<ω I2n; this is an open and dense set, and hence

there exists some α < ω1 such that R \ G = Fα. By |X ∩ Fα| ≤ ℵ0, let
{y2n+1 | n < ω} be some enumeration of X \ G. For all n < ω, pick an
interval I2n+1 such that y2n+1 ∈ I2n+1 and |I2n+1| < ε2n+1.

Clearly, X ⊆
⋃
n<ω In. �

3Here, |I| denotes the diameter of the open interval I.
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5. Square Sequences

Definition 5.1. We say that a stationary set S carries a square sequence
type-bounded by η iff there exists a collection {Cα | α ∈ S} such that for all
limit α ∈ S:

(1) Cα is a club subset of S, and otp(Cα) ≤ η;
(2) if β ∈ acc(Cα), then β ∈ S and Cβ = Cα ∩ β.

Here, acc(Cα) := {β ∈ Cα | sup(Cα ∩ β) = β}. Jensen’s square principle,
�λ, is the assertion that λ+ carries a partial square sequence. Note that �ω
holds trivially.

In this section, we would like to present Shelah’s results that, quite of-
ten, many stationary subsets of successor cardinals carries a partial square
sequence. For this, we first need the following well-known lemma.

Theorem 5.2 (Engelking-Kar lowicz). For cardinals κ ≤ λ ≤ µ ≤ 2λ, the
following are equivalent:

(1) λ<κ = λ;
(2) there exists a collection of functions, 〈fi : µ→ λ | i < λ〉, such that

for every X ∈ [µ]<κ and every function f : X → λ, there exists some
i < λ with f ⊆ fi.

Proof. (2)⇒(1) Suppose 〈fi : µ→ λ | i < λ〉 is a given collection. Then

|{fi � θ | i < λ, θ < κ}| ≤ λ < λ<κ,

so there must exists some f ∈ <κλ with f 6⊆ fi for all i < λ.
(1)⇒(2) The simplified proof here is due to Shelah. Put:

W := {(a,A, g) | a ∈ [λ]<κ,A ∈ [a]<κ, g ∈ Aλ}.
Then |W | = λ<κ = λ, and we may fix an enumeration

W = {(ai,Ai, gi) | i < λ}.
By µ ≤ 2λ, let 〈Bα | α < µ〉 be a sequence of distinct subsets of λ. For all
i < λ, we now define fi : µ→ λ, by letting for all α < µ:

fi(α) =

{
g(ai ∩Bα), ai ∩Bα ∈ Ai
0, otherwise

.

Finally, suppose that a set X ∈ [µ]<κ and a function f : X → λ are given.
For all distinct α, β ∈ X, pick x(α, β) ∈ Bα∆Bβ. Put a = {x(α, β) |
α, β ∈ X,α 6= β}. Then, |a| < κ and for all distinct α, β ∈ X, we have
a ∩ Bα 6= a ∩ Bβ. It follows that |A| = |a|, where A := {a ∩ Bα | α ∈ X}.
It also follows that we may well-define a function g : A → λ by letting:

g(a ∩Bα) := f(α), (α ∈ X).

Pick i < λ such that (a,A, g) = (ai,Ai, gi). Then, f ⊆ fi. �
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Theorem 5.3 (Shelah, [?]). Suppose κ ≤ λ are cardinals such that λ<κ = λ.
Denote T := {α < λ+ | ω ≤ cf(α) < κ}; then T is the union of λ many

sets, each carrying a partial square sequence type-bounded by κ. That is,
there exists sequences 〈〈Ci

α | α ∈ Si〉 | i < λ〉 such that:

(1)
⋃
i<λ Si = T ;

(2) for all i < λ and α ∈ Si:
(a) Ci

α is a club subset of α, with otp(Ci
α) < κ;

(b) Ci
β = Ci

α ∩ β for all β ∈ acc(Ci
α).

Proof. By λ<κ = λ, let us fix for each α < λ+, an enumeration {Ajα | j < λ}
of [α]<κ. By λ<κ = λ, and the Engelking-Kar lowicz theorem, we may pick a
collection of functions 〈fi : λ+ → λ | i < λ〉 such that for every X ∈ [λ+]<κ

and every function f : X → λ, there exists some i < λ with f ⊆ fi.

For each i < λ and α ∈ T , denote Ci
α := A

fi(α)
α .

Now, for each i < λ, put:

Si := {α ∈ T | Ci
α satisfies 2(a) + 2(b)}.

Finally, we fix some α ∈ T , and show that α ∈
⋃
i<λ Si.

Let Dα be a club subset of α with otp(Dα) < κ. Consider the function
f : Dα ∪ {α} → λ defined by:

f(β) := min{j < λ | Dα ∩ β = Ajβ}, (β ∈ Dα ∪ {α}).
Pick i < λ such that f ⊆ fi, then for all β ∈ Dα ∪ {α}, we have:

Dα ∩ β = A
f(β)
β = A

fi(β)
β = Ci

β,

and hence α ∈ Si. �

Corollary 5.4. If λ<λ = λ, then {α < λ+ | ω ≤ cf(α) < λ} is the union of
λ many sets, each carrying a partial square sequence type-bounded by λ.

In future versions of this section, we shall be presenting Shelah’s improve-
ments to the preceding corollary.
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