Chain conditions, unbounded colorings and the C-sequence spectrum

Assaf Rinot

Bar-Ilan University

23-September-2019

XV Luminy workshop in Set Theory

Centre International de Rencontres Mathmatiques, Marseille
Bibliography

Most results are taken from the following joint papers with Chris Lambie-Hanson:

2. Knaster and friends II: The C-sequence number, *to be submitted*.
Conventions

- κ and λ denote infinite cardinals;
- $\text{Reg}(\kappa) := \{\theta < \kappa \mid \text{cf}(\theta) = \theta \geq \aleph_0\}$;
- $E^\kappa_{\geq \chi} := \{\alpha < \kappa \mid \text{cf}(\alpha) \geq \chi\}$ and $E^\kappa_{> \chi} := \{\alpha < \kappa \mid \text{cf}(\alpha) > \chi\}$;
- $[A]^\chi := \{a \subseteq A \mid |a| = \chi\}$ and $[A]^{< \chi} := \{a \subseteq A \mid |a| < \chi\}$;
- For a, b, nonempty sets of ordinals, $a < b$ means that $\sup(a) < \min(b)$.
Chain conditions

Let $\mathbb{P} := \langle P, \leq \rangle$ denote a poset.

Definition
For a subset $X \subseteq P$, we write $\bigwedge X := \{ z \in P \mid \forall x \in X(z \leq x) \}$. We say that $x, y \in P$ are **compatible** iff $\bigwedge\{x, y\} \neq \emptyset$.

Definition

- \mathbb{P} satisfies the **κ-cc** iff $\forall A \in [P]^{\kappa} \exists X \in [A]^2 \ \bigwedge X \neq \emptyset$;
- \mathbb{P} is **κ-Knaster** iff $\forall A \in [P]^{\kappa} \exists B \in [A]^{\kappa} \ \forall X \in [B]^2 \ \bigwedge X \neq \emptyset$;
- \mathbb{P} has **precaliber κ** iff $\forall A \in [P]^{\kappa} \exists B \in [A]^{\kappa} \ \forall X \in [B]^{<\omega} \ \bigwedge X \neq \emptyset$;
- \mathbb{P} is **κ-stationarily layered** iff $\{ Q \in [P]^{<\kappa} \mid \langle Q, \leq \rangle \text{ is a regular suborder of } \mathbb{P} \}$ is stationary in $[P]^{<\kappa}$.
The product order (aka, coordinatewise order)

Given posets $\langle P_1, \leq_1 \rangle, \langle P_2, \leq_2 \rangle$, consider their product $\langle P_1 \times P_2, \sqsubseteq \rangle$, where $(x, y) \sqsubseteq (x', y')$ iff $x \leq_1 x'$ and $y \leq_2 y'$. (Longer products are defined analogously.)

Question
Suppose that $\langle P_1, \leq_1 \rangle, \langle P_2, \leq_2 \rangle$ satisfy the κ-cc. Must their product satisfy the κ-cc?

Sufficient condition
If one of the posets is moreover κ-Knaster, then “yes”.

Definition
Let C_κ denote the assertion that the product of any two κ-cc posets is again κ-cc.

Note: It suffices to consider squares C_κ iff \mathbb{P}^2 is κ-cc for every κ-cc poset \mathbb{P}.
Basic facts

Fact 1. C_κ holds for $\kappa = \aleph_0$.

We moreover show that every κ-cc poset $\langle P, \leq \rangle$ is κ-Knaster.

Given $A \in [P]^\kappa$, define a coloring $c : [A]^2 \to 2$ via $c(x, y) = 1$ iff $\bigwedge \{x, y\} \neq \emptyset$.

By Ramsey’s theorem, there exists $B \in [A]^\kappa$ which is c-homogeneous.

As $|B| = \kappa$ and $\langle P, \leq \rangle$ satisfies the κ-cc, there exists $X \in [B]^2$ with $\bigwedge X \neq \emptyset$. But B is c-homogeneous, and hence, for every $X \in [B]^2$, $\bigwedge X \neq \emptyset$, so that B is as sought.

Fact 2. C_κ holds for κ weakly compact.

κ is weakly compact iff $\kappa > \aleph_0$ and for every $c : [\kappa]^2 \to 2$, there exists $B \in [\kappa]^\kappa$ which is homogeneous for c.

Fact 3. C_κ holds for κ singular strong limit.

- Erdős and Tarski (1943): If κ is a singular cardinal and a poset P satisfies the κ-cc, then P satisfies the λ-cc for some $\lambda < \kappa$.
- Kurepa (1963): If P satisfies the λ^+-cc, then P^2 satisfies the $(2^\lambda)^+$-cc.
The case $\kappa = \aleph_1$.

Question (Marczewski, 1947)
Is C_{\aleph_1} (aka, “productivity of the ccc”) true?

Answers

▸ (Kurepa, 1952): C_{\aleph_1} entails Souslin’s hypothesis.
▸ (Kunen; Rowbottom; Solovay; Hajnal-Juhász; Juhász, 1970’s) MA$_{\aleph_1}$ entails C_{\aleph_1}.
▸ (Todorcevic-Velickovic, 1987) MA$_{\aleph_1}$ iff every ccc poset has precaliber \aleph_1.
▸ (Roitman, 1979): After adding random/Cohen real, C_{\aleph_1} fails;
▸ (Fleissner, 1978): After adding κ many Cohen reals, there exists a ccc poset \mathbb{P}, such that \mathbb{P}^2 has antichain of size κ;
▸ (Galvin, 1980) after (Laver, unpublished): $c = \aleph_1$ refutes C_{\aleph_1}.
▸ (Todorcevic, 1988): $b = \aleph_1$ refutes C_{\aleph_1}.

Open problem
Is MA$_{\aleph_1}$ equivalent to C_{\aleph_1}?
The case $\kappa > \aleph_1$. Counterexamples in ZFC

Theorem (Todorcevic, 1985)
$\mathcal{C}_{\text{cf}(\beth_{\alpha+1})}$ fails for every limit ordinal α.
Moreover, if λ is a cardinal for which there exists a linear order of size 2^λ with a dense subset of size λ, then \mathcal{C}_κ fails, for $\kappa = \text{cf}(2^\lambda)$.

Theorem (Todorcevic, 1986)
\mathcal{C}_{λ^+} fails whenever λ singular, and $\theta^\text{cf}(\lambda) < \lambda$ for all $\theta < \lambda$.

Theorem (Todorcevic, 1989)
\mathcal{C}_{λ^+} fails whenever λ singular, and $2^{\text{cf}(\lambda)} < \lambda$.

Theorem (Shelah, 1994)
\mathcal{C}_{λ^+} fails whenever λ singular.
More counterexamples in ZFC

Theorem (Shelah, 1990–1997)

C_{λ^+} fails whenever λ is a regular cardinal $\geq \aleph_1$. Specifically:
- [Sh:280]: $\lambda > 2^{\aleph_0}$;
- [Sh:327]: $\lambda > \aleph_1$;
- [Sh:572]: $\lambda = \aleph_1$.

Corollary

C_κ fails for every successor cardinal $\kappa > \aleph_1$.

Conjecture (Todorcevic, 1980’s)

For every regular cardinal $\kappa > \aleph_1$, C_κ iff κ is weakly compact.

Theorem (2014)

For every regular cardinal $\kappa > \aleph_1$, C_κ entails (κ is weakly compact)L.

In fact, C_κ entails $\neg \Box(\kappa)$ and that every stationary subset of κ reflects.
Longer products and stronger chain conditions

Shortly after our work on Todorcevic’s conjecture, Lücke and his colleagues addressed analogous questions involving stronger variations of the κ-cc. We mention three results:

Characterization theorem (Cox and Lücke, 2016)

For every regular uncountable cardinal κ:
κ is weakly compact iff every κ-cc poset is moreover κ-stationarily layered.

Non-characterization theorem (Cox and Lücke, 2016)

Suppose κ is weakly compact. In some cofinality-preserving forcing extension:
For every $\theta < \kappa$, the class of κ-Knaster posets is closed under θ-support products, yet, κ is not weakly compact.

Theorem (Lambie-Hanson and Lücke, 2018)

Suppose $\theta < \kappa$ are infinite and regular. If the class of κ-Knaster posets is closed under θ-support products, then $\neg \square(\kappa)$, so that $(\kappa$ is weakly compact)L.
How to cook up a counterexample

Hereafter, κ denotes a regular uncountable cardinal.

Galvin (1980) gave a consistent construction of an anti-Ramsey coloring $c : [\kappa]^2 \to 2$ from which he derived a κ-cc poset whose square is not κ-cc. In 1997, Shelah constructed a ZFC example of such a coloring for $\kappa = \aleph_2$.

Lambie-Hanson and Lücke (2018) gave a consistent construction of non-special κ-tree from which they derived a κ-Knaster poset whose infinite power is not κ-cc. They proved that such a tree exists, assuming $\Box(\kappa)$.

We would like to obtain the conclusions of Lambie-Hanson and Lücke from ZFC, e.g., getting a ZFC example of an \aleph_2-Knaster poset whose ω^{th}-power is not \aleph_2-cc.

For this, let us revisit Galvin’s approach.
From a coloring $c : [\kappa]^2 \to \theta$ with $\theta \in \text{Reg}(\kappa)$, we derive posets:

- $\mathbb{P} := \{ (x, i) \mid x \in [\kappa]^{<\omega}, c``[x]^2 \subseteq \{i\} \}$.
Colorings

From a coloring $c : [\kappa]^2 \to \theta$ with $\theta \in \text{Reg}(\kappa)$, we derive posets:

- $\mathbb{P} := \{(x, i) \mid x \in [\kappa]<\omega, c''[x]^2 \subseteq \{i\}\}$;
- $\mathbb{Q} := \{(x, i) \mid x \in [\kappa]<\omega, c''[x]^2 \cap i = \emptyset\}$.
Colorings

From a coloring $c : [\kappa]^2 \to \theta$ with $\theta \in \text{Reg}(\kappa)$, we derive posets:

- $\mathbb{P} := \{(x, i) \mid x \in [\kappa]^{< \omega}, c"[x]^2 \subseteq \{i\}\}$;
- $\mathbb{Q} := \{(x, i) \mid x \in [\kappa]^{< \omega}, c"[x]^2 \cap i = \emptyset\}$.

Ordering: (x, i) extends (y, j) iff $x \supseteq y$ and $i = j$.
Colorings

From a coloring $c : [\kappa]^2 \to \theta$ with $\theta \in \text{Reg}(\kappa)$, we derive posets:

- $\mathbb{P} := \{ (x, i) \mid x \in [\kappa]^{<\omega}, c''[x]^2 \subseteq \{i\} \}$;
- $\mathbb{Q} := \{ (x, i) \mid x \in [\kappa]^{<\omega}, c''[x]^2 \cap i = \emptyset \}$.

Ordering: (x, i) extends (y, j) iff $x \supseteq y$ and $i = j$.

Key feature

- \mathbb{P}^2 fails to have the κ-cc;
- \mathbb{Q}^{θ} fails to have the κ-cc.
Colorings

From a coloring $c : [\kappa]^2 \to \theta$ with $\theta \in \text{Reg}(\kappa)$, we derive posets:

- $\mathbb{P} := \{(x, i) \mid x \in [\kappa]^{<\omega}, c''[x]^2 \subseteq \{i\}\}$;
- $\mathbb{Q} := \{(x, i) \mid x \in [\kappa]^{<\omega}, c''[x]^2 \cap i = \emptyset\}$.

Ordering: (x, i) extends (y, j) iff $x \supseteq y$ and $i = j$.

Key feature

- \mathbb{P}^2 fails to have the κ-cc, e.g., $\{(\{\alpha\}, 0), (\{\alpha\}, 1) \mid \alpha < \kappa\}$.
- \mathbb{Q}^θ fails to have the κ-cc.

About \mathbb{P}^2.

For $\alpha < \beta < \kappa$ and $i := c(\alpha, \beta)$, $(\{\alpha\}, 1 - i)$ and $(\{\beta\}, 1 - i)$ are \mathbb{P}-incompatible. □
Colorings

From a coloring \(c : [\kappa]^2 \to \theta \) with \(\theta \in \text{Reg}(\kappa) \), we derive posets:

- \(\mathbb{P} := \{ (x, i) \mid x \in [\kappa]^{<\omega}, \, c^"{[x]^2} \subseteq \{i\} \} \);
- \(\mathbb{Q} := \{ (x, i) \mid x \in [\kappa]^{<\omega}, \, c^"{[x]^2} \cap i = \emptyset \} \).

Ordering: \((x, i)\) extends \((y, j)\) iff \(x \supseteq y\) and \(i = j\).

Key feature

- \(\mathbb{P}^2 \) fails to have the \(\kappa \)-cc, e.g., \(\{ (\{\alpha\}, i) \mid i < 2 \mid \alpha < \kappa \} \).
- \(\mathbb{Q}^\theta \) fails to have the \(\kappa \)-cc, e.g., \(\{ (\{\alpha\}, i) \mid i < \theta \mid \alpha < \kappa \} \).

About \(\mathbb{P}^2 \).
For \(\alpha < \beta < \kappa \) and \(i := c(\alpha, \beta) \), \((\{\alpha\}, 1 - i) \) and \((\{\beta\}, 1 - i) \) are \(\mathbb{P} \)-incompatible.

About \(\mathbb{Q}^\theta \).
For \(\alpha < \beta < \kappa \) and \(i := c(\alpha, \beta) \), \((\{\alpha\}, i + 1) \) and \((\{\beta\}, i + 1) \) are \(\mathbb{Q} \)-incompatible.
Colorings

From a coloring $c : [\kappa]^2 \to \theta$ with $\theta \in \text{Reg}(\kappa)$, we derive posets:

- $\mathbb{P} := \{(x, i) \mid x \in [\kappa]^{\omega}, c"[x]^2 \subseteq \{i\}\}$;
- $\mathbb{Q} := \{(x, i) \mid x \in [\kappa]^{\omega}, c"[x]^2 \cap i = \emptyset\}$.

Ordering: (x, i) extends (y, j) iff $x \supseteq y$ and $i = j$.

Key feature

- \mathbb{P}^2 fails to have the κ-cc;
- \mathbb{Q}^θ fails to have the κ-cc.

The heart of the matter is to construct c for which the corresponding \mathbb{P} be κ-cc, or \mathbb{Q}^τ be κ-Knaster for all $\tau < \theta$.

Colorings

From a coloring $c : [\kappa]^2 \to \theta$ with $\theta \in \text{Reg}(\kappa)$, we derive posets:

- $\mathbb{P} := \{(x, i) \mid x \in [\kappa]^{<\omega}, \ c``[x]^2 \subseteq \{i\}\}$;
- $\mathbb{Q} := \{(x, i) \mid x \in [\kappa]^{<\omega}, \ c``[x]^2 \cap i = \emptyset\}$.

Ordering: (x, i) extends (y, j) iff $x \supseteq y$ and $i = j$.

Key feature

- \mathbb{P}^2 fails to have the κ-cc;
- \mathbb{Q}^θ fails to have the κ-cc.

The heart of the matter is to construct c for which the corresponding \mathbb{P} be κ-cc, or \mathbb{Q}^τ be κ-Knaster for all $\tau < \theta$.

By a simple reverse-engineering process, one arrives at a reformulation of these features in the language of the coloring c.

12 / 24
Colorings

From a coloring $c : [\kappa]^2 \to \theta$ with $\theta \in \text{Reg}(\kappa)$, we derive posets:

- $\mathbb{P} := \{(x, i) \mid x \in [\kappa]^{<\omega}, c``[x]^2 \subseteq \{i\}\}$;
- $\mathbb{Q} := \{(x, i) \mid x \in [\kappa]^{<\omega}, c``[x]^2 \cap i = \emptyset\}$.

Ordering: (x, i) extends (y, j) iff $x \supseteq y$ and $i = j$.

Key feature

- \mathbb{P}^2 fails to have the κ-cc;
- \mathbb{Q}^{θ} fails to have the κ-cc.

The heart of the matter is to construct c for which the corresponding \mathbb{P} be κ-cc, or \mathbb{Q}^{τ} be κ-Knaster for all $\tau < \theta$.

By a simple reverse-engineering process, one arrives at a reformulation of these features in the language of the coloring c.

The poset \mathbb{P} was analyzed by Galvin. Today, we shall focus on the poset \mathbb{Q}.
Suppose \(Q := \{(x, i) \mid x \in [\kappa]^{<\omega}, c^{``[x]^2 \cap i = \emptyset}\} \) is derived from \(c : [\kappa]^2 \to \theta \).

Assuming \(\theta \in \text{Reg}(\kappa) \), \(Q \) is \(\kappa \)-Knaster iff it has precaliber \(\kappa \) iff \(c \) witnesses \(U(\kappa, \theta) \):

Definition

\(U(\kappa, \theta) \) asserts that there exists a coloring \(c : [\kappa]^2 \to \theta \) such that for every family \(A \subseteq [\kappa]^{<\omega} \) consisting of \(\kappa \)-many pairwise disjoint sets, and every \(i < \theta \), there is \(B \in [A]^\kappa \) such that \(\min(c[a \times b]) \geq i \) for every pair \(a < b \) from \(B \).

There is also a \(\chi \)-closed variation: \(\{(x, i) \mid x \in [\kappa]^{<\chi}, c^{``[x]^2 \cap i = \emptyset}\} \). For this, we need:

Definition

\(U(\kappa, \theta, \chi) \) asserts there is a coloring \(c : [\kappa]^2 \to \theta \) such that for every \(\chi' < \chi \), every family \(A \subseteq [\kappa]^\chi' \) consisting of \(\kappa \)-many pairwise disjoint sets, and every \(i < \theta \), there is \(B \in [A]^\kappa \) such that \(\min(c[a \times b]) \geq i \) for every pair \(a < b \) from \(B \).
The coloring axiom

Definition

$U(\kappa, \mu, \theta, \chi)$ asserts there is a coloring $c : [\kappa]^2 \rightarrow \theta$ such that for every $\chi' < \chi$, every family $A \subseteq [\kappa]^{\chi'}$ consisting of κ-many pairwise disjoint sets, and every $i < \theta$, there is $B \in [A]^{\mu}$ such that $\min(c[a \times b]) \geq i$ for every pair $a < b$ from $B.$

Note that $\text{Pr}_1(\kappa, \kappa, \theta, \chi)$ entails $U(\kappa, 2, \theta, \chi).$
The coloring axiom

Definition
\(U(\kappa, \mu, \theta, \chi)\) asserts there is a coloring \(c : [\kappa]^2 \to \theta\) such that for every \(\chi' < \chi\), every family \(A \subseteq [\kappa]^\chi'\) consisting of \(\kappa\)-many pairwise disjoint sets, and every \(i < \theta\), there is \(B \in [A]^{\mu}\) such that \(\min(c[a \times b]) \geq i\) for every pair \(a < b\) from \(B\).

Proposition
Suppose \(\chi, \theta \in \text{Reg}(\kappa)\) and that \(\kappa\) is \((<\chi)\)-inaccessible. For every coloring \(c : [\kappa]^2 \to \theta\) witnessing \(U(\kappa, \mu, \theta, \chi)\), the corresponding poset \(Q\) satisfies the following:
The coloring axiom

Definition

$U(\kappa, \mu, \theta, \chi)$ asserts there is a coloring $c : [\kappa]^2 \to \theta$ such that for every $\chi' < \chi$, every family $A \subseteq [\kappa]^{\chi'}$ consisting of κ-many pairwise disjoint sets, and every $i < \theta$, there is $B \in [A]^\mu$ such that $\min(c[a \times b]) \geq i$ for every pair $a < b$ from B.

Proposition

Suppose $\chi, \theta \in \text{Reg}(\kappa)$ and that κ is $(<\chi)$-inaccessible. For every coloring $c : [\kappa]^2 \to \theta$ witnessing $U(\kappa, \mu, \theta, \chi)$, the corresponding poset \mathbb{Q} satisfies the following:

- \mathbb{Q}^θ is not κ-cc;
The coloring axiom

Definition

\(U(\kappa, \mu, \theta, \chi) \) asserts there is a coloring \(c : [\kappa]^2 \to \theta \) such that for every \(\chi' < \chi \), every family \(\mathcal{A} \subseteq [\kappa]^{\chi'} \) consisting of \(\kappa \)-many pairwise disjoint sets, and every \(i < \theta \), there is \(B \in [\mathcal{A}]^\mu \) such that \(\min(c[a \times b]) \geq i \) for every pair \(a < b \) from \(B \).

Proposition

Suppose \(\chi, \theta \in \text{Reg}(\kappa) \) and that \(\kappa \) is \((\vartriangleleft \chi) \)-inaccessible. For every coloring \(c : [\kappa]^2 \to \theta \) witnessing \(U(\kappa, \mu, \theta, \chi) \), the corresponding poset \(Q \) satisfies the following:

\(\uparrow \) \(Q^\theta \) is not \(\kappa \)-cc;

\(\uparrow \) if \(\mu = 2 \), then \(Q^\tau \) is \(\kappa \)-cc for all \(\tau < \min\{\chi, \theta\} \);
The coloring axiom

Definition
$U(\kappa, \mu, \theta, \chi)$ asserts there is a coloring $c : [\kappa]^2 \to \theta$ such that for every $\chi' < \chi$, every family $\mathcal{A} \subseteq [\kappa]^{\chi'}$ consisting of κ-many pairwise disjoint sets, and every $i < \theta$, there is $B \in [\mathcal{A}]^\mu$ such that $\min(c[a \times b]) \geq i$ for every pair $a < b$ from B.

Proposition
Suppose $\chi, \theta \in \text{Reg}(\kappa)$ and that κ is ($<\chi$)-inaccessible. For every coloring $c : [\kappa]^2 \to \theta$ witnessing $U(\kappa, \mu, \theta, \chi)$, the corresponding poset Q satisfies the following:
- Q^θ is not κ-cc;
- if $\mu = 2$, then Q^τ is κ-cc for all $\tau < \min\{\chi, \theta\}$;
- if $\mu = \kappa$, then Q^τ has precaliber κ for all $\tau < \min\{\chi, \theta\}$;
The coloring axiom

Definition
\(U(\kappa, \mu, \theta, \chi) \) asserts there is a coloring \(c : [\kappa]^2 \to \theta \) such that for every \(\chi' < \chi \), every family \(A \subseteq [\kappa]^{\chi'} \) consisting of \(\kappa \)-many pairwise disjoint sets, and every \(i < \theta \), there is \(B \in [A]^\mu \) such that \(\min(c[a \times b]) \geq i \) for every pair \(a < b \) from \(B \).

Proposition
Suppose \(\chi, \theta \in \text{Reg}(\kappa) \) and that \(\kappa \) is \((<\chi)\)-inaccessible. For every coloring \(c : [\kappa]^2 \to \theta \) witnessing \(U(\kappa, \mu, \theta, \chi) \), the corresponding poset \(Q \) satisfies the following:

- \(Q^\theta \) is not \(\kappa \)-cc;
- if \(\mu = 2 \), then \(Q^\tau \) is \(\kappa \)-cc for all \(\tau < \min\{\chi, \theta\} \);
- if \(\mu = \kappa \), then \(Q^\tau \) has precaliber \(\kappa \) for all \(\tau < \min\{\chi, \theta\} \);
- \(Q \) is well-met and \(\chi \)-directed-closed with greatest lower bounds.
The coloring axiom

Definition

$U(\kappa, \mu, \theta, \chi)$ asserts there is a coloring $c : [\kappa]^2 \to \theta$ such that for every $\chi' < \chi$, every family $A \subseteq [\kappa]^{\chi'}$ consisting of κ-many pairwise disjoint sets, and every $i < \theta$, there is $B \in [A]^\mu$ such that $\min(c[a \times b]) \geq i$ for every pair $a < b$ from B.

Conjecture

For κ regular uncountable, κ is weakly compact iff $U(\kappa, 2, \omega, 2)$ fails.
The coloring axiom

Definition

\(U(\kappa, \mu, \theta, \chi) \) asserts there is a coloring \(c : [\kappa]^2 \rightarrow \theta \) such that for every \(\chi' < \chi \), every family \(\mathcal{A} \subseteq [\kappa]^{\chi'} \) consisting of \(\kappa \)-many pairwise disjoint sets, and every \(i < \theta \), there is \(B \in [\mathcal{A}]^\mu \) such that \(\min(c[a \times b]) \geq i \) for every pair \(a < b \) from \(B \).

Conjecture

For \(\kappa \) regular uncountable, \(\kappa \) is weakly compact iff \(U(\kappa, 2, \omega, 2) \) fails.

In other words, we ask whether the existence of a \(\kappa \)-Aronszajn tree gives rise to a coloring \(c : [\kappa]^2 \rightarrow \omega \) with the property that \(\sup(c"[A]^2) = \omega \) for every \(A \in [\kappa]^\kappa \).
The coloring axiom

Definition

$U(\kappa, \mu, \theta, \chi)$ asserts there is a coloring $c : [\kappa]^2 \to \theta$ such that for every $\chi' < \chi$, every family $\mathcal{A} \subseteq [\kappa]^{\chi'}$ consisting of κ-many pairwise disjoint sets, and every $i < \theta$, there is $B \in [\mathcal{A}]^\mu$ such that $\min(c[a \times b]) \geq i$ for every pair $a < b$ from B.

Conjecture

For κ regular uncountable, κ is weakly compact iff $U(\kappa, 2, \omega, 2)$ fails.

In other words, we ask whether the existence of a κ-Aronszajn tree gives rise to a coloring $c : [\kappa]^2 \to \omega$ with the property that $\sup(c''[A]^2) = \omega$ for every $A \in [\kappa]^\kappa$.

Partial answer 1

The existence of a κ-Aronszajn tree with an ω-ascent path entails $U(\kappa, 2, \omega, \omega)$.
The coloring axiom

Definition
$U(\kappa, \mu, \theta, \chi)$ asserts there is a coloring $c : [\kappa]^2 \to \theta$ such that for every $\chi' < \chi$, every family $A \subseteq [\kappa]^{\chi'}$ consisting of κ-many pairwise disjoint sets, and every $i < \theta$, there is $B \in [A]^\mu$ such that $\min(c[a \times b]) \geq i$ for every pair $a < b$ from B.

Conjecture
For κ regular uncountable, κ is weakly compact iff $U(\kappa, 2, \omega, 2)$ fails.
In other words, we ask whether the existence of a κ-Aronszajn tree gives rise to a coloring $c : [\kappa]^2 \to \omega$ with the property that $\sup(c''[A]^2) = \omega$ for every $A \in [\kappa]^\kappa$.

Partial answer 1
The existence of a κ-Aronszajn tree with an ω-ascent path entails $U(\kappa, 2, \omega, \omega)$.

Partial answer 2 (with Todorcevic)
The existence of a coherent κ-Aronszajn tree entails $U(\kappa, 2, \omega, \omega)$ but not $U(\kappa, \kappa, \omega, \omega)$.
Inspecting the parameters

Definition

\(U(\kappa, \mu, \theta, \chi) \) asserts there is a coloring \(c : [\kappa]^2 \to \theta \) such that for every \(\chi' < \chi \), every family \(A \subseteq [\kappa]^\chi' \) consisting of \(\kappa \)-many pairwise disjoint sets, and every \(i < \theta \), there is \(B \in [A]^\mu \) such that \(\min(c[a \times b]) \geq i \) for every pair \(a < b \) from \(B \).

About the second parameter

- \(U(\kappa, 2, \theta, \chi) \) iff \(U(\kappa, \omega, \theta, \chi) \);
- Suppose \(c \models U(\kappa, 2, \theta, \chi) \). If \(c \) is closed, then \(c \models U(\kappa, \kappa, \theta, \chi) \).

Definition

\(c : [\kappa]^2 \to \theta \) is closed iff \(\{ \alpha < \beta \mid c(\alpha, \beta) \leq i \} \) is closed below \(\beta \) for all \(\beta < \kappa \), \(i < \theta \).
Inspecting the parameters

Definition

$U(\kappa, \mu, \theta, \chi)$ asserts there is a coloring $c : [\kappa]^2 \to \theta$ such that for every $\chi' < \chi$, every family $A \subseteq [\kappa]^{\chi'}$ consisting of κ-many pairwise disjoint sets, and every $i < \theta$, there is $B \in [A]^\mu$ such that $\min(c[a \times b]) \geq i$ for every pair $a < b$ from B.

About the third parameter

- $U(\kappa, \kappa, \kappa, \kappa)$ holds;
- $U(\kappa, \mu, \theta, \chi)$ iff $U(\kappa, \mu, \text{cf}(\theta), \chi)$;

Therefore, hereafter, we shall focus on $\theta \in \text{Reg}(\kappa)$.
Inspecting the parameters

Definition
$U(\kappa, \mu, \theta, \chi)$ asserts there is a coloring $c : [\kappa]^2 \rightarrow \theta$ such that for every $\chi' < \chi$, every family $\mathcal{A} \subseteq [\kappa]^{\chi'}$ consisting of κ-many pairwise disjoint sets, and every $i < \theta$, there is $B \in [\mathcal{A}]^\mu$ such that $\min(c[a \times b]) \geq i$ for every pair $a < b$ from B.

About the third parameter
- $U(\kappa, \kappa, \kappa, \kappa)$ holds;
- $U(\kappa, \mu, \theta, \chi)$ iff $U(\kappa, \mu, \text{cf}(\theta), \chi)$;
- Lack of monotonicity: If λ is the singular limit of strongly compact cardinals, then, for every $\theta \leq \lambda$, $U(\lambda^+, \lambda^+, \theta, \lambda)$ iff $\text{cf}(\theta) = \text{cf}(\lambda)$.

Inspecting the parameters

Definition
\[U(\kappa, \mu, \theta, \chi) \] asserts there is a coloring \(c : [\kappa]^2 \to \theta \) such that for every \(\chi' < \chi \), every family \(A \subseteq [\kappa]^{\chi'} \) consisting of \(\kappa \)-many pairwise disjoint sets, and every \(i < \theta \), there is \(B \in [A]^\mu \) such that \(\min(c[a \times b]) \geq i \) for every pair \(a < b \) from \(B \).

About the fourth parameter
- \(U(\kappa, \kappa, \theta, 3) \) iff \(U(\kappa, \kappa, \theta, \omega) \);
- \(U(\lambda^+, 2, \theta, 2) \) iff \(U(\lambda^+, 2, \theta, \text{cf}(\lambda)) \);

The above is optimal: If \(\lambda \) is the limit of strongly compact cardinals, \(\theta \in \text{Reg}(\lambda) \) with \(\theta \neq \text{cf}(\lambda) \), then \(U(\lambda^+, 2, \theta, \chi) \) holds for \(\chi := \text{cf}(\lambda) \), but fails for \(\chi := \text{cf}(\lambda)^+ \).
Inspecting the parameters

Definition
$U(\kappa, \mu, \theta, \chi)$ asserts there is a coloring $c : [\kappa]^2 \to \theta$ such that for every $\chi' < \chi$, every family $\mathcal{A} \subseteq [\kappa]^{\chi'}$ consisting of κ-many pairwise disjoint sets, and every $i < \theta$, there is $B \in [\mathcal{A}]^\mu$ such that $\min(c[a \times b]) \geq i$ for every pair $a < b$ from B.

About the fourth parameter
- $U(\kappa, \kappa, \theta, 3)$ iff $U(\kappa, \kappa, \theta, \omega)$;
- $U(\lambda^+, 2, \theta, 2)$ iff $U(\lambda^+, 2, \theta, \text{cf}(\lambda))$;
- There are κ, θ and colorings c, $c \models U(\kappa, \kappa, \theta, 2)$, but $c \not\models U(\kappa, 2, \theta, 3)$;
- If there is a closed witness to $U(\lambda^+, \lambda^+, \theta, 2)$, then there is for $U(\lambda^+, \lambda^+, \theta, \text{cf}(\lambda))$.
Further findings

Theorem

For every regular \(\lambda \) and \(\theta \in \text{Reg}(\lambda^+) \), there is \(c : [\lambda^+]^2 \rightarrow \theta \) witnessing \(U(\lambda^+, \lambda^+, \theta, \lambda) \) which is moreover closed.
Further findings

Theorem
For every regular λ and $\theta \in \text{Reg}(\lambda^+)$, there is $c : [\lambda^+]^2 \rightarrow \theta$ witnessing $U(\lambda^+, \lambda^+, \theta, \lambda)$ which is moreover closed.

In case you wondered
The corresponding tree $T(c) := \{ c(\cdot, \gamma) \upharpoonright \beta \mid \beta \leq \gamma < \lambda^+ \}$ may consistently be special λ^+-Aronszajn tree / almost Souslin λ^+-Aronszajn tree.
Further findings

Theorem
For every regular λ and $\theta \in \text{Reg}(\lambda^+)$, there is $c : [\lambda^+]^2 \to \theta$ witnessing $U(\lambda^+, \lambda^+, \theta, \lambda)$ which is moreover closed.

Corollary
There exists an \aleph_2-Knaster poset whose ω^{th}-power is not \aleph_2-cc.
Further findings

Theorem
For every regular λ and $\theta \in \text{Reg}(\lambda^+)$, there is $c : [\lambda^+]^2 \to \theta$ witnessing $U(\lambda^+, \lambda^+, \theta, \lambda)$ which is moreover closed.

Corollary
There exists an \aleph_2-Knaster poset whose ω^{th}-power is not \aleph_2-cc.

More generally
Suppose that $\theta \leq \chi \leq \lambda$ are regular, with $\lambda^{<\chi} = \lambda$. Then $\exists \chi$-directed-closed poset \mathbb{Q}:
- \mathbb{Q}^τ has precaliber λ^+ for all $\tau < \theta$;
- \mathbb{Q}^θ is not λ^+-cc.
Further findings

Theorem
For every regular λ and $\theta \in \text{Reg}(\lambda^+)$, there is $c : [\lambda^+]^2 \rightarrow \theta$ witnessing $U(\lambda^+, \lambda^+, \theta, \lambda)$ which is moreover closed.

Corollary
There exists an \aleph_2-Knaster poset whose ω^{th}-power is not \aleph_2-cc.

CH entails a σ-directed-closed \aleph_2-Knaster poset whose ω^{th}-power is not \aleph_2-cc.
Further findings

Theorem
For every regular λ and $\theta \in \text{Reg}(\lambda^+)$, there is $c : [\lambda^+]^2 \to \theta$ witnessing $U(\lambda^+, \lambda^+, \theta, \lambda)$ which is moreover closed.

Corollary
There exists an \aleph_2-Knaster poset whose ω^{th}-power is not \aleph_2-cc.

CH entails a σ-directed-closed \aleph_2-Knaster poset whose ω^{th}-power is not \aleph_2-cc.

Open problem
Does CH entail a σ-closed \aleph_2-cc poset whose square is not \aleph_2-cc?
Further findings (cont.)

Theorem

For every singular λ and $\theta \in \text{Reg}(\lambda)$, any of the following entail the existence of a closed witness to $U(\lambda^+, \lambda^+, \theta, \text{cf}(\lambda))$:

- $2\lambda = \lambda^+$;
- $\text{Refl}(< \text{cf}(\lambda), \lambda^+)$ fails;
- $\theta = \omega$ or $\theta = \text{cf}(\lambda)$;
- $\theta < \nu < \nu^+ = \text{cf}(\lambda)$;
- $\theta < \text{cf}(\lambda)$ and $\text{cf}(\text{NS}_{\text{cf}(\lambda)}, \subseteq) < \lambda$.

Further findings (cont.)

Theorem
For every singular λ and $\theta \in \text{Reg}(\lambda)$, any of the following entail the existence of a closed witness to $U(\lambda^+, \lambda^+, \theta, \text{cf}(\lambda))$:

- $2^\lambda = \lambda^+$;
- $\text{Refl}(< \text{cf}(\lambda), \lambda^+)$ fails;
- $\theta = \omega$ or $\theta = \text{cf}(\lambda)$;
- $\theta < \nu < \nu^+ = \text{cf}(\lambda)$;
- $\theta < \text{cf}(\lambda)$ and $\text{cf}(\text{NS}_{\text{cf}(\lambda)}, \subseteq) < \lambda$.

Corollary
If the class of κ-Knaster posets is closed under ω powers, then κ is inaccessible.
Further findings (cont.)

Theorem
For every singular λ and $\theta \in \text{Reg}(\lambda)$, any of the following entail the existence of a closed witness to $U(\lambda^+, \lambda^+, \theta, \text{cf}(\lambda))$:

- $2^\lambda = \lambda^+$;
- $\text{Refl}(< \text{cf}(\lambda), \lambda^+)$ fails;
- $\theta = \omega$ or $\theta = \text{cf}(\lambda)$;
- $\theta < \nu < \nu^+ = \text{cf}(\lambda)$;
- $\theta < \text{cf}(\lambda)$ and $\text{cf}(\text{NS}_{\text{cf}(\lambda)}, \subseteq) < \lambda$.

Theorem
For every $\theta, \chi \in \text{Reg}(\kappa)$, any of the following entails a closed witness to $U(\kappa, \kappa, \theta, \chi)$:

- $\Box(\kappa, < \omega)$ or $\Box^{\text{ind}}(\kappa, \theta)$;
- \exists stationary $S \subseteq E^{\kappa}_{\geq \chi}$ with $S \cap \alpha$ nonstationary for all $\alpha \in E^{\kappa}_{> \omega}$;
- \exists stationary $S \subseteq E^{\kappa}_{\geq \chi}$ with $S \cap \alpha$ nonstationary for all $\alpha \in \text{Reg}(\kappa)$, and κ is inacc.
A new cardinal invariant

Theorem (Todorcevic, 1987)
For every strongly inaccessible cardinal κ, the following are equivalent:

1. κ is weakly compact;
2. For every C-sequence $\langle C_\beta \mid \beta < \kappa \rangle$, there exist $\Delta \in [\kappa]^\kappa$ and $b : \kappa \rightarrow \kappa$ such that $\Delta \cap \alpha = C_{b(\alpha)} \cap \alpha$ for every $\alpha < \kappa$.

Recall
$\langle C_\beta \mid \beta < \kappa \rangle$ is a C-sequence iff each C_β is closed subset of β with $\sup(C_\beta) = \sup(\beta)$.
A new cardinal invariant

Theorem (Todorcevic, 1987)

For every strongly inaccessible cardinal κ, the following are equivalent:

1. κ is weakly compact;
2. For every C-sequence $\langle C_\beta \mid \beta < \kappa \rangle$, there exist $\Delta \in [\kappa]\kappa$ and $b : \kappa \to \kappa$ such that $\Delta \cap \alpha = C_{b(\alpha)} \cap \alpha$ for every $\alpha < \kappa$.

The cardinal invariant that we introduce suggests a way to measure how far an inaccessible cardinal κ is from being weakly compact, though, as we will see, it is of interest for successor cardinals as well.
A new cardinal invariant

Theorem (Todorcevic, 1987)

For every strongly inaccessible cardinal \(\kappa \), the following are equivalent:

1. \(\kappa \) is weakly compact;

2. For every \(C \)-sequence \(\langle C_\beta \mid \beta < \kappa \rangle \), there exist \(\Delta \in [\kappa]^{\kappa} \) and \(b : \kappa \rightarrow \kappa \) such that
 \[\Delta \cap \alpha = C_{b(\alpha)} \cap \alpha \]
 for every \(\alpha < \kappa \).

The cardinal invariant that we introduce suggests a way to measure how far an inaccessible cardinal \(\kappa \) is from being weakly compact, though, as we will see, it is of interest for successor cardinals as well.

Definition (The \(C \)-sequence number of \(\kappa \))

If \(\kappa \) is weakly compact, then let \(\chi(\kappa) := 0 \).
A new cardinal invariant

Theorem (Todorcevic, 1987)
For every strongly inaccessible cardinal κ, the following are equivalent:
1. κ is weakly compact;
2. For every C-sequence $\langle C_\beta \mid \beta < \kappa \rangle$, there exist $\Delta \in [\kappa]^{\kappa}$ and $b : \kappa \rightarrow \kappa$ such that $\Delta \cap \alpha = C_{b(\alpha)} \cap \alpha$ for every $\alpha < \kappa$.

The cardinal invariant that we introduce suggests a way to measure how far an inaccessible cardinal κ is from being weakly compact, though, as we will see, it is of interest for successor cardinals as well.

Definition (The C-sequence number of κ)
If κ is weakly compact, then let $\chi(\kappa) := 0$.
Otherwise, let $\chi(\kappa)$ denote the least $\chi \leq \kappa$ s.t., for every C-sequence $\langle C_\beta \mid \beta < \kappa \rangle$, there exist $\Delta \in [\kappa]^{\kappa}$ and $b : \kappa \rightarrow [\kappa]^{\chi}$ with $\Delta \cap \alpha \subseteq \bigcup_{\beta \in b(\alpha)} C_\beta$ for all $\alpha < \kappa$.

A new cardinal invariant

Theorem (Todorcevic, 1987)
For every strongly inaccessible cardinal κ, the following are equivalent:

1. κ is weakly compact;
2. For every C-sequence $\langle C_\beta \mid \beta < \kappa \rangle$, there exist $\Delta \in [\kappa]^\kappa$ and $b : \kappa \to \kappa$ such that $\Delta \cap \alpha = C_{b(\alpha)} \cap \alpha$ for every $\alpha < \kappa$.

Note that $\chi(\kappa)$ is well-defined. In fact, $\chi(\kappa) \leq \sup(\text{Reg}(\kappa))$.

Definition (The C-sequence number of κ)
If κ is weakly compact, then let $\chi(\kappa) := 0$.
Otherwise, let $\chi(\kappa)$ denote the least $\chi \leq \kappa$ s.t., for every C-sequence $\langle C_\beta \mid \beta < \kappa \rangle$, there exist $\Delta \in [\kappa]^\kappa$ and $b : \kappa \to [\kappa]^\chi$ with $\Delta \cap \alpha \subseteq \bigcup_{\beta \in b(\alpha)} C_\beta$ for all $\alpha < \kappa$.
A new cardinal invariant

Todorcevic’s analysis of the number of steps function readily establishes the following.

The C-sequence number and yOU

$U(\kappa, \kappa, \omega, \chi(\kappa))$ holds, as witnessed by the closed function ρ_2.

However, it is consistent that $U(\kappa, \kappa, \omega, \chi)$ holds with $\chi \gg \chi(\kappa)$.

Definition (The C-sequence number of κ)

If κ is weakly compact, then let $\chi(\kappa) := 0$.

Otherwise, let $\chi(\kappa)$ denote the least $\chi \leq \kappa$ s.t., for every C-sequence $\langle C_\beta \mid \beta < \kappa \rangle$, there exist $\Delta \in [\kappa]^{\kappa}$ and $b : \kappa \to [\kappa]^\chi$ with $\Delta \cap \alpha \subseteq \bigcup_{\beta \in b(\alpha)} C_\beta$ for all $\alpha < \kappa$.
A new cardinal invariant

Todorcevic’s analysis of the number of steps function readily establishes the following.

The C-sequence number and youU

$U(\kappa, \kappa, \omega, \chi(\kappa))$ holds, as witnessed by the closed function ρ_2.

However, it is consistent that $U(\kappa, \kappa, \omega, \chi)$ holds with $\chi \gg \chi(\kappa)$.

Corollary

If the class of κ-Knaster posets is closed under taking ω powers, then $\chi(\kappa) < \omega$.

Definition (The C-sequence number of κ)

If κ is weakly compact, then let $\chi(\kappa) := 0$.

Otherwise, let $\chi(\kappa)$ denote the least $\chi \leq \kappa$ s.t., for every C-sequence $\langle C_\beta \mid \beta < \kappa \rangle$, there exist $\Delta \in [\kappa]^\kappa$ and $b : \kappa \to [\kappa]^\chi$ with $\Delta \cap \alpha \subseteq \bigcup_{\beta \in b(\alpha)} C_\beta$ for all $\alpha < \kappa$.
A new cardinal invariant

Questions

• Is \(\chi(\kappa) < \omega \) a large cardinal property?
• How about \(\chi(\kappa) < \sup(\text{Reg}(\kappa)) \)?
• Could \(\chi(\kappa) \) be singular?

Corollary

If the class of \(\kappa \)-Knaster posets is closed under taking \(\omega \) powers, then \(\chi(\kappa) < \omega \).

Definition (The \(C \)-sequence number of \(\kappa \))

If \(\kappa \) is weakly compact, then let \(\chi(\kappa) := 0 \).
Otherwise, let \(\chi(\kappa) \) denote the least \(\chi \leq \kappa \) s.t., for every \(C \)-sequence \(\langle C_\beta \mid \beta < \kappa \rangle \), there exist \(\Delta \in [\kappa]^\kappa \) and \(b : \kappa \to [\kappa]^\chi \) with \(\Delta \cap \alpha \subseteq \bigcup_{\beta \in b(\alpha)} C_\beta \) for all \(\alpha < \kappa \).
Increasing the C-sequence number

Kunen (1978) showed that by forcing over a model with a weakly compact cardinal κ, one obtains a model V having a κ-Souslin tree S such that $V^S \models \kappa$ is weakly compact.

Proposition

In Kunen’s model, $\chi(\kappa) = 1$.

Proof. The κ-Souslin tree witnesses that κ is not weakly compact, so $\chi(\kappa) \neq 0$.

Now, let $\vec{C} = \langle C_\beta \mid \beta < \kappa \rangle$ be an arbitrary C-sequence.

In V^S, \vec{C} is a C-sequence over a weakly compact cardinal κ, and hence there is $\Delta \in [\kappa]^\kappa$ and $b : \kappa \to \kappa$ such that $\Delta \cap \alpha = C_{b(\alpha)} \cap \alpha$ for each $\alpha < \kappa$.

Clearly, Δ is a club. As S is κ-cc, there is a club $D \subseteq \kappa$ in V, with $D \subseteq \Delta$.

Then $D \cap \alpha \subseteq C_{b(\alpha)} \cap \alpha$ for each $\alpha < \kappa$. \qed

Theorem

*Suppose $\chi(\kappa) = 0$. For every $\theta \in \text{Reg}(\kappa^+)$, there is a cofinality-preserving forcing extension in which κ remains strongly inaccessible, and $\chi(\kappa) = \theta$.**
Increasing the C-sequence number (cont.)

Observation
$\text{cf}(\lambda) \leq \chi(\lambda^+) \leq \lambda$.

Theorem
If λ is a singular limit of supercompact cardinals, then $\chi(\lambda^+) = \text{cf}(\lambda)$.

Theorem
If λ is a singular limit of supercompact cardinals, and $\theta \in \text{Reg}(\lambda)$ with $\theta \geq \text{cf}(\lambda)$, then, in some cofinality-preserving forcing extension, $\chi(\lambda^+) = \theta$.

Theorem
$\chi(\aleph_{\omega+1}) = \aleph_{\omega}$ is consistent, and so is $\chi(\aleph_{\omega+1}) = \omega$.

1The latter assumes the consistency of a supercompact.
How large

Theorem

1. \(\text{Refl}(<\omega, E^\kappa_{>\chi(\kappa)}) \);
2. If \(\chi(\kappa) < \omega \), then \(\chi(\kappa) \in \{0, 1\} \);
3. If \(\kappa \) is inaccessible and \(\chi(\kappa) < \kappa \), then \(\kappa \) is \(\omega \)-Mahlo;
4. If \(\chi(\kappa) = 1 \), then \(\Box(\kappa, <\mu) \) fails for all \(\mu < \kappa \);
5. If \(\chi(\kappa) = 1 \), then, for every sequence \(\langle S_i \mid i < \kappa \rangle \) of stationary subsets of \(\kappa \), there exists an inaccessible \(\beta < \kappa \) such that \(S_i \cap \beta \) is stationary in \(\beta \) for all \(i < \beta \).

Corollary

- In \(L \), either \(\chi(\kappa) = 0 \) or \(\chi(\kappa) = \sup(\text{Reg}(\kappa)) \);
- \(\Box(\kappa, <\omega) \) entails \(\chi(\kappa) = \sup(\text{Reg}(\kappa)) \);
- If \(\chi(\kappa) = 1 \), then \(\kappa \) is greatly Mahlo.
- If the class of \(\kappa \)-Knaster posets is closed under \(\omega \) powers, then \(\kappa \) is greatly Mahlo.
The C-sequence spectrum

Definition
For a C-sequence $\vec{C} = \langle C_\beta \mid \beta < \kappa \rangle$, let $\chi(\vec{C})$ denote the least cardinal $\chi \leq \kappa$ such that there exist $\Delta \in [\kappa]^{\kappa}$ and $b : \kappa \to [\kappa]^\chi$ with $\Delta \cap \alpha \subseteq \bigcup_{\beta \in b(\alpha)} C_\beta$ for every $\alpha < \kappa$.

Definition
$\text{Cspec}(\kappa) := \{ \chi(\vec{C}) \mid \vec{C} \text{ is a } C\text{-sequence over } \kappa \} \setminus \omega$.

Theorem
1. If $\text{Cspec}(\kappa) \neq \emptyset$, then $\min(\text{Cspec}(\kappa)) = \omega$ and $\chi(\kappa) = \max(\text{Cspec}(\kappa))$;
2. $\chi \in \text{Cspec}(\kappa) \implies \text{cf}(\chi) \in \text{Cspec}(\kappa)$, but not \iff.

Open problem
Is $\text{Cspec}(\kappa)$ an interval? Is it a closed set?
Is every limit uncountable cardinal in $\text{Cspec}(\kappa)$ an accumulation point of $\text{Cspec}(\kappa)$?
Unexpected equivalency

Theorem

For every $\theta \in \text{Reg}(\kappa)$, the following are equivalent:

- $\theta \in \text{Cspec}(\kappa)$;
- *There exists a closed witness to $U(\kappa, \kappa, \theta, \theta)$.*

The forward implication also works for θ singular; the backward does not.

Corollary

- *If κ is a successor of a regular cardinal, then $\text{Reg}(\kappa) \subseteq \text{Cspec}(\kappa)$;*
- *If κ is a non-Mahlo inaccessible, then $\text{Reg}(\kappa) \subseteq \text{Cspec}(\kappa)$;*
- *If $\Box(\kappa, <\omega)$ holds, then $\text{Reg}(\kappa) \subseteq \text{Cspec}(\kappa)$;*
- *If $E^\kappa_{\geq \chi}$ admits a non-reflecting stationary subset, then $\text{Reg}(\chi^+) \subseteq \text{Cspec}(\kappa)$.***
Conjectures

1. If κ is inaccessible and $1 < \chi(\kappa) < \kappa$, $\exists \kappa$-Aronszajn tree with a $\chi(\kappa)$-ascent path.
2. Any instance $U(\kappa, \kappa, \ldots)$ may be witnessed by a closed coloring.
3. If $\chi(\kappa) = 1$, then, there exists a coherent κ-Aronszajn tree.
4. If $\chi(\kappa) = 1$, then, in some set-forcing extension, $\chi(\kappa) = 0$.
5. If $\chi(\kappa)$ is singular, then $\text{cf}(\chi(\kappa)) = \text{cf}((\text{sup} (\text{Reg}(\kappa))))$.
6. $\text{Reg}(\text{cf}(\lambda)^+) \subseteq \text{Cspec}(\lambda^+)$ for every singular λ.
7. For all $\theta, \chi \in \text{Cspec}(\kappa)$, $U(\kappa, \kappa, \theta, \chi)$ holds.