Diamond, non-saturation, and weak square principles

Logic Colloquium 2009

(European ASL summer meeting)

02-Aug-09, Sofia

Assaf Rinot
Tel-Aviv University

http://www.tau.ac.il/~rinot
Diamond on successor cardinals

Definition (Jensen, ‘72). For an infinite cardinal, λ, and a stationary set $S \subseteq \lambda^+$, $\diamondsuit(S)$ asserts the existence of a sequence $\langle A_\alpha \mid \alpha \in S \rangle$ such that $\{\alpha \in S \mid A \cap \alpha = A_\alpha\}$ is stationary for all $A \subseteq \lambda^+$.

Fact. For $S \subseteq \lambda^+$, $\diamondsuit S \Rightarrow \diamondsuit_{\lambda^+} \Rightarrow 2^\lambda = \lambda^+$.

Question. Given a stationary, $S \subseteq \lambda^+$, Does $2^\lambda = \lambda^+ \Rightarrow \diamondsuit(S)$?
A related concept

Fact. ♦(S) entails that NS_{\lambda^+} \upharpoonright S is non-saturated.
That is, there exists a family of \lambda^{++} many stationary subsets of S, whose pairwise intersection nonstationary.

Proof. Let \langle A_\alpha \mid \alpha \in S \rangle witness ♦(S). Denote S_A = \{\alpha \mid A \cap \alpha = A_\alpha\}. Then \{S_A \mid A \subseteq \lambda^+\} exemplifies the non-saturation of NS_{\lambda^+} \upharpoonright S. ■

Question. Given a stationary, S \subseteq \lambda^+,
Must NS_{\lambda^+} \upharpoonright S be non-saturated?
Two negative results. $\lambda = \omega$

Theorem (Jensen, ‘74). It is consistent that CH holds, while $\diamondsuit(\omega_1)$ fails.

Theorem (Steel-Van Wesep, ’82). Suppose that V is a model of “$\text{ZF} + \text{AD}_R + \Theta$ is regular”.

Then, there is a forcing extension which is a model of ZFC, in which NS_{ω_1} is saturated.

Remark. By Later work of Shelah and Jensen-Steel, the saturation of NS_{ω_1} is equiconsistent with the existence of a single Woodin cardinal.
Two positive results. $\lambda > \omega$

Denote $E^\lambda_\neq := \{ \delta < \lambda^+ \mid \text{cf}(\delta) \neq \kappa \}$.

Theorem (Shelah, ’90s). If λ is an uncountable cardinal, and S is a stationary subset of $E^\lambda_\neq = \text{cf}(\lambda)$, then $\text{NS}_{\lambda^+} \upharpoonright S$ is non-saturated.

A continuous effort of 30 years recently culminated in:

Theorem (Shelah, 2007). If λ is an uncountable cardinal, and S is a stationary subset of $E^\lambda_\neq = \text{cf}(\lambda)$, then $2^\lambda = \lambda^+ \Rightarrow \diamond(S)$.

The critical cofinality. $\lambda = \text{cf}(\lambda)$

Denote $E^{\lambda^+}_\kappa := \{\delta < \lambda^+ \mid \text{cf}(\delta) = \kappa\}$.

Theorem (Shelah, ‘80). For every regular uncountable cardinal, λ, it is consistent that:

$$\text{GCH} + \neg \diamondsuit(E^{\lambda^+}_\lambda) .$$

Theorem (Woodin, ’80s). For every regular uncountable cardinal, λ, having a huge cardinal above it, in some $<\lambda$-closed forcing extension:

$$\text{NS}_{\lambda^+} \upharpoonright S \text{ saturated, for some stationary } S \subseteq E^{\lambda^+}_\lambda .$$
The critical cofinality. \(\lambda > \text{cf}(\lambda) \)

Def. \(S \subseteq \lambda^+ \) **reflects** iff the following set is stationary:

\[
\text{Tr}(S) := \{ \gamma < \lambda^+ \mid \text{cf}(\gamma) > \omega, S \cap \gamma \text{ is stationary} \}.
\]

Theorem (Shelah, ‘84). For every singular cardinal, \(\lambda \), in some cofinality-preserving forcing extension:

\[
\text{GCH} \rightarrow \neg \diamond(S) \text{ for some non-reflecting stationary set } S \subseteq E_{\text{cf}(\lambda)}^{\lambda^+}.
\]

Theorem (Foreman, ‘83). For every singular cardinal, \(\lambda \), having a supercompact cardinal above it, and an almost-huge cardinal above that supercompact, in some \(\lambda \)-preserving forcing extension:

\[
\text{NS}_{\lambda^+} \upharpoonright S \text{ saturated, for a non-reflecting stationary } S \subseteq E_{\text{cf}(\lambda)}^{\lambda^+}.
\]
Questions

Question 1. Suppose λ is a singular cardinal.
Must $2^\lambda = \lambda^+ \Rightarrow \diamondsuit(S)$ for every $S \subseteq E_{\text{cf}(\lambda)}^{\lambda^+}$ that reflects?

Question 2. Suppose λ is a singular cardinal.
Must $\text{NS}_{\lambda^+} \upharpoonright S$ be non-saturated for every $S \subseteq E_{\text{cf}(\lambda)}^{\lambda^+}$ that reflects?

Question 3. Can $\text{NS}_{\omega_2} \upharpoonright E_{\omega_1}^{\omega_2}$ be saturated?
Some answers
Diamond and reflecting sets

A partial \textcolor{red}{affirmative} answer to Question 1 is provided by Shelah and Zeman, as follows.

\textbf{Theorem} (Shelah, ‘84). If $2^\lambda = \lambda^+$ for a strong limit singular cardinal λ, and \Box^*_λ holds, then $\Diamond(S)$ for every $S \subseteq E_{\text{cf}(\lambda)}^{\lambda+}$ that reflects.

\textbf{Theorem} (Zeman, 2008). If $2^\lambda = \lambda^+$ for a singular cardinal λ, and \Box^*_λ holds, then $\Diamond(S)$ for every $S \subseteq E_{\text{cf}(\lambda)}^{\lambda+}$ that reflects.
Weak Square

Definition (Jensen ’72). \square^*_λ asserts the existence of a sequence $\langle P_\alpha \mid \alpha < \lambda^+ \rangle$ such that:

1. $P_\alpha \subseteq [\alpha]^{<\lambda}$ and $|P_\alpha| = \lambda$ for all $\alpha < \lambda^+$;

2. for every limit $\gamma < \lambda^+$, there exists a club $C_\gamma \subseteq \gamma$ satisfying:

 $C_\gamma \cap \alpha \in P_\alpha$ for all $\alpha < \gamma$.

The approachability ideal

Definition (Shelah). A set T is in $I[\lambda^+]$ iff:

1. $T \subseteq \lambda^+$;

2. there exists a sequence $\langle P_\alpha \mid \alpha < \lambda^+ \rangle$ such that:

 2.1. $P_\alpha \subseteq [\alpha]^{<\lambda}$ and $|P_\alpha| = \lambda$ for all $\alpha < \lambda^+$;

 2.2. for almost all $\gamma \in T$, there exists an unbounded $A_\gamma \subseteq \gamma$ satisfying:

 $$A_\gamma \cap \alpha \in \bigcup_{\beta < \gamma} P_\beta \text{ for all } \gamma < \alpha.$$
A relative of approachability ideal

Definition. Given $S \subseteq E^\lambda_\text{cf}(\lambda)$, a set T is in $I[S; \lambda]$ iff:

1. $T \subseteq \text{Tr}(S)$;

2. there exists a sequence $\langle P_\alpha \mid \alpha < \lambda^+ \rangle$ such that:

 2.1. $P_\alpha \subseteq [\alpha]^{\lambda}$ and $|P_\alpha| = \lambda$ for all $\alpha < \lambda^+$;

 2.2. for almost all $\gamma \in T$, there exists a stationary $S_\gamma \subseteq S \cap \gamma$ satisfying:

 $$S_\gamma \cap \alpha \in \bigcup \{P(X) \mid X \in P_\alpha\} \text{ for all } \alpha < \gamma$$

Remark. If λ is SSL, then $I[S; \lambda] \subseteq I[\lambda^+]$.
A comparison with weak square

Let λ denote a singular cardinal, and let $S \subseteq E^{\lambda^+}_{\text{cf}(\lambda)}$.

Observation. If $I[S; \lambda]$ contains a stationary set, then S reflects.

Proposition. Assume \Box^*_λ. If S reflects, then $I[S; \lambda]$ contains a stationary set.

Theorem. It is relatively consistent with the existence of a supercompact cardinal that \Box^*_λ fails, while $I[S; \lambda]$ contains a stationary set for every stationary $S \subseteq E^{\lambda^+}_{\text{cf}(\lambda)}$.
Answering question 1

Improving the Shelah-Zeman theorem, we have:

Theorem. Suppose λ is a singular cardinal, $S \subseteq E^\lambda_{\text{cf}(\lambda)}$;

If $I[S; \lambda]$ contains a stat. set, then $2^\lambda = \lambda^+ \Rightarrow \diamond(S)$.

Answering Question 1 *in the negative*, while establishing that the above improvement is optimal, we have:

Theorem (Gitik-R.). It is relatively consistent with the existence of a supercompact cardinal that:

1. GCH holds;
2. $\mathbb{N}_{\omega+1} \in I[\mathbb{N}_{\omega+1}]$;
3. Every stationary subset of $E^\mathbb{N}_{\omega+1}$ reflects;
4. $\diamond(S')$ fails, for some (reflecting) $S \subseteq E^\mathbb{N}_{\omega+1}$.
Stationary Approachability Property

Let λ denote a singular cardinal.

Definition. SAP_λ denote the assertion that $I[S; \lambda]$ contains a stationary set for every $S \subseteq E_{\text{cf}(\lambda)}^{\lambda^+}$ that reflects.

Thus, $\square_\lambda^* \Rightarrow \text{SAP}_\lambda$, $\text{SAP}_\lambda \not\Rightarrow \square_\lambda^*$, and:

Corollary. Suppose SAP_λ holds and $2^\lambda = \lambda^+$. Then $\Diamond(S)$ is valid for every $S \subseteq \lambda^+$ that reflects.
Theorem (Shelah, ‘84). If $2^\lambda = \lambda^+$ for a strong limit singular cardinal λ, and \Box^*_λ holds, then $\diamondsuit(S)$ for every $S \subseteq E^{\lambda^+}_{\text{cf}(\lambda)}$ that reflects.

Theorem. If $2^\lambda = \lambda^+$ for a strong limit singular cardinal λ, and \Box^*_λ holds, and every stationary subset of $E^{\lambda^+}_{\text{cf}(\lambda)}$ reflects, then, moreover, $\Diamond^*(\lambda^+)$ holds.

Theorem. Replacing \Box^*_λ with SAPλ is impossible, in the sense that the conclusion would fail to hold. (obtained by forcing over a model with a supercompact.)
Summary: Square vs. Diamond

Let Refl_λ denote the assertion that every stationary subset of $E_{\text{cf}(\lambda)}^{\lambda^+}$ reflects.

Then, for λ singular, we have:
1. $\text{GCH} + \square^*_\lambda \nRightarrow \diamond^*(\lambda^+);$
2. $\text{GCH} + \text{Refl}_\lambda + \square^*_\lambda \Rightarrow \diamond^*(\lambda^+);$
3. $\text{GCH} + \text{Refl}_\lambda + \text{SAP}_\lambda \nRightarrow \diamond^*(\lambda^+);$
4. $\text{GCH} + \text{Refl}_\lambda + \text{SAP}_\lambda \Rightarrow \diamond(S)$ for every stat. $S \subseteq \lambda^+;$
5. $\text{GCH} + \text{Refl}_\lambda + \text{AP}_\lambda \nRightarrow \diamond(S)$ for every stat. $S \subseteq \lambda^+.$

Remark. AP_λ asserts that $\lambda^+ \in I[\lambda^+].$
Around question 2

Let λ denote a singular cardinal, and $S \subseteq E_{\text{cf}(\lambda)}^{\lambda^+}$.

Theorem (Gitik-Shelah, ’97).

$\text{NS}_{\lambda^+} \upharpoonright E_{\text{cf}(\lambda)}^{\lambda^+}$ is non-saturated.

Theorem (Krueger, 2003).

If $\text{NS}_{\lambda^+} \upharpoonright S$ is saturated, then S is co-fat.

Theorem. If $\text{NS}_{\lambda^+} \upharpoonright S$ is saturated, then $I[S; \lambda]$ does not contain a stationary set.

In particular, SAP_λ (and hence \Box^{\ast}_λ) imposes a positive answer to Question 2.
The effect of smaller cardinals
A shift in focus

Instead of studying the validity of $\diamond (S)$ (or saturation), we now focus on finding sufficient conditions for $I[S; \lambda]$ to contain a stationary set.

This yields a linkage between virtually unrelated objects.

Theorem. Assume GCH and that κ is an uncoutable cardinal with no κ^+-Souslin trees.

Then $\diamond (E_{\text{cf}(\lambda)}^{\lambda^+})$ holds for the class of singular cardinals λ of cofinality κ.

let us explain how small cardinals effects λ..
The effect of smaller cardinals, I

Definition. Assume $\theta > \kappa > \omega$ are regular cardinals.

$R_1(\theta, \kappa)$ asserts that for every function $f : E^\theta_{<\kappa} \to \kappa$, there exists some $j < \kappa$ such that:

$$\{ \delta \in E^\theta_\kappa \mid f^{-1}[j] \cap \delta \text{ is stationary} \} \text{ is stationary.}$$

Facts. 1. $\square_\kappa \Rightarrow \neg R_1(\kappa^+, \kappa)$;
2. every stationary subset of $E^\kappa^{++}_\kappa$ reflects $\Rightarrow R_1(\kappa^{++}, \kappa^+)$;
3. By Harrington-Shelah '85, $R_1(\aleph_2, \aleph_1)$ is equiconsistent with the existence of a Mahlo cardinal.
The effect of smaller cardinals, II

Theorem. Suppose $\lambda > \text{cf}(\lambda) = \kappa > \omega$; If there exists a regular $\theta \in (\kappa, \lambda)$ such that $R_1(\theta, \kappa)$ holds, then $I[E^\lambda_{\text{cf}(\lambda)}; \lambda]$ contains a stationary set.

Corollary. Suppose κ is a regular cardinal and every stationary subset of E^{κ}_{κ} reflects. Then $2^\lambda = \lambda^+ \Rightarrow \diamondsuit(E^\lambda_{\text{cf}(\lambda)})$ for the class of singular cardinals λ of cofinality κ^+.

Corollary. Assume PFA^+; $\diamondsuit(E^\lambda_{\text{cf}(\lambda)})$ holds for every λ strong limit of cofinality ω_1.

23
The effect of smaller cardinals, III

Definition. Assume $\theta > \kappa > \omega$ are regular cardinals.

$R_2(\theta, \kappa)$ asserts that for every function $f : E^{\theta}_{<\kappa} \to \kappa$, there exists some $j < \kappa$ such that:

$$\{ \delta \in E^\theta_\kappa \mid f^{-1}[j] \cap \delta \text{ is non-stationary} \} \text{ is non-stationary.}$$

Facts. 1. $R_2(\theta, \kappa) \Rightarrow R_1(\theta, \kappa)$ and hence the strength of $R_2(\kappa^+, \kappa)$ is at least of a Mahlo cardinal.
2. By Magidor ’82, $R_2(\aleph_2, \aleph_1)$ is relatively consistent with the existence of a weakly compact cardinal.

Remark. The exact strength of $R_2(\aleph_2, \aleph_1)$ is unknown.
The effect of smaller cardinals, IV

Theorem. Suppose $\lambda > \text{cf}(\lambda) = \kappa > \omega$;
If there exists a regular $\theta \in (\kappa, \lambda)$ such that $R_2(\theta, \kappa)$
holds, then $\text{Tr}(S) \cap E^\lambda_\theta \in I[S; \lambda]$ for every $S \subseteq \lambda^+$.

Corollary. Suppose $R_2(\theta, \kappa)$ holds.
For every sing. cardinal λ of cofinality κ with $2^\lambda = \lambda^+$:

$$\diamond(S) \text{ holds whenever } \text{Tr}(S) \cap E^\lambda_\theta \text{ is stationary.}$$

Remark. The $R_2(\cdot, \cdot)$ proof resembles the one of an analogous theorem by Viale-Sharon concerning the weak approachability ideal. The $R_1(\cdot, \cdot)$ proof builds on a fundamental fact from Shelah’s pcf theory.
Generalized stationary sets
The sup function, I

Definition. A set $\mathcal{X} \subseteq P(\lambda^+)$ is *stationary* (in the generalized sense) iff for every $f : [\lambda^+]^{<\omega} \to \lambda^+$, there exists some $X \in \mathcal{X}$ such that $f : [X]^{<\omega} \subseteq X$.

Question (König-Larson-Yoshinobu). Let λ denote an infinite cardinal. Is it possible to prove in ZFC that every stationary $\mathcal{B} \subseteq [\lambda^+]^\omega$ can be thinned out to a stationary $\mathcal{A} \subseteq \mathcal{B}$ on which the sup-function is injective?
The sup function, II

Question (König-Larson-Yoshinobu). Let λ denote an infinite cardinal. Is it possible to prove in ZFC that every stationary $B \subseteq [\lambda^+]^\omega$ can be thinned out to a stationary $A \subseteq B$ on which the sup-function is injective?

Proposition. If $A \subseteq [\lambda^+]^\omega$ is a stationary set on which the sup-function is injective, then $\text{cf}([\lambda^+]^\omega, \subseteq) = \lambda^+$. In particular, if the SCH fails, then we get a counterexample to the above question. But what can one say in the context of GCH?

▶ It turns out that diamond helps..
The sup function, III

Theorem. Suppose λ is a cardinal, $2^\lambda = \lambda^+$. For a stationary $S \subseteq E^{\lambda^+_\lambda}$, TFAE:

1) $\Diamond(S)$;
2) there exists a stationary $X \subseteq [\lambda^+]^{<\lambda}$, on which the sup-function is an injection from X to S.

Corollary. A negative answer to the K-L-Y question.

Proof. Work in a model of GCH and there exists $S \subseteq E^{\aleph_\omega+1}$ on which $\Diamond(S)$ fails.

Put $\mathcal{B} := \{X \in [\aleph_\omega+1]^{\omega} \mid \text{sup}(X) \in S\}$. Then \mathcal{B} is (a rather large) stationary set, and the sup-function is non-injective on any stationary subset of \mathcal{B}. ■
A related result

Theorem. Let λ denote an infinite cardinal.

Suppose $\mathcal{X} \subseteq [\lambda^+]^{<\lambda}$ is a stationary set on which the sup-function is $(\leq \lambda)$-to-1. Put $S := \{\sup(X) \mid X \in \mathcal{X}\}$. Then $\text{NS}_{\lambda^+} \upharpoonright S$ is non-saturated.
$\lambda^+\text{-guessing}$
A very weak consequence of $\Diamond\left(E^\lambda_{\text{cf}(\lambda)} \right)$

Definition. For a function $f : \lambda^+ \rightarrow \text{cf}(\lambda)$, let κ_f denote the minimal cardinality of a family $\mathcal{P} \subseteq [\lambda^+]^{\text{cf}(\lambda)}$ with the following property.

For all $Z \subseteq \lambda^+$ such that $\bigwedge_{\beta < \text{cf}(\lambda)} |Z \cap f^{-1}\{\beta\}| = \lambda^+$, there exist some $a \in \mathcal{P}$ with $\text{sup}(f[a \cap Z]) = \text{cf}(\lambda)$.

Definition. For a singular cardinal λ, we say that $\lambda^+-\text{guessing}$ holds iff $\kappa_f \leq \lambda^+$ for all $f \in \lambda^+ \text{cf}(\lambda)$.

*Note that if λ is SSL, then we may assume that \mathcal{P} is closed under taking subsets. Thus, we may moreover demand the existence of $a \in \mathcal{P}$ such that $a \subseteq Z$ and $f \upharpoonright a$ is injective.
the failure of λ^+-guessing

Theorem (Džamonja-Shelah, 2000). It is relatively consistent with the existence of a supercompact cardinal that there exist a strong limit singular cardinal, λ, and a function $f : \lambda^+ \to \text{cf}(\lambda)$ such that $\kappa_f = 2^\lambda > \lambda^+$.

Theorem. Suppose λ is a strong limit singular; then:

$$\{\kappa_f \mid f \in \lambda^+ \text{ cf}(\lambda)\} = \{0, 2^\lambda\}.$$

Corollary. For a strong limit singular cardinal, λ, TFAE:
1) λ^+-guessing;
2) $\diamondsuit^+ (E_{\lambda^+}^{\lambda^+} \neq \text{cf}(\lambda))$.

33
Theorem. The following are equivalent:

1. λ^+-guessing holds for every singular cardinal, λ;

2. Shelah’s Strong Hypothesis, i.e.,

 \[\text{cf}(\text{cf}(\lambda), \subseteq) = \lambda^+ \]
 for every singular cardinal, λ.

3. Every first-countable topological space whose density is a regular cardinal, κ, enjoys the following reflection:
 if every \textbf{separable subspace} is of size $\leq \kappa$, then the whole space is of size $\leq \kappa$.

Open problems
Open problems

Let λ denote a singular cardinal.

Question I. Does $2^\lambda = \lambda^+$ entail $\Diamond(E^\lambda_{\text{cf}(\lambda)}^+)$?

Question II. Must there exist a stationary subset of $E^\lambda_{>\text{cf}(\lambda)}^+$ that carries a partial (weak) square sequence?

Question III. Is "NS$_{\omega_1}$ saturated" consistent with CH?
Thank you!