Analytic quasi-orders and two forms of diamond

13-May-2019
50 Years of Set Theory in Toronto
Fields Institute for Research in Mathematical Sciences

Assaf Rinot
Bar-Ilan University
This is a joint work with Gabriel Fernandes and Miguel Moreno at BIU
Throughout, κ denotes a regular uncountable cardinal satisfying $\kappa^{<\kappa} = \kappa$.
Throughout, κ denotes a regular uncountable cardinal satisfying $\kappa^{<\kappa} = \kappa$.

The generalized Baire space

κ^{κ} consists of functions from κ to κ, and a basic open set takes the form

$$N_\eta := \{ f \in \kappa^{\kappa} \mid \eta \subseteq f \},$$

where $\eta \in {}^{<\kappa}\kappa$, i.e., η is a function from an ordinal $<\kappa$ to κ.
Throughout, κ denotes a regular uncountable cardinal satisfying $\kappa^{<\kappa} = \kappa$.

The generalized Baire space

κ^{κ} consists of functions from κ to κ, and a basic open set takes the form

$$N_\eta := \{ f \in \kappa^{\kappa} \mid \eta \subseteq f \},$$

where $\eta \in <\kappa \kappa$, i.e., η is a function from an ordinal $<\kappa$ to κ.

The generalized Cantor space

2^{κ} is the topological subspace of κ^{κ} consisting of all functions from κ to 2.
Throughout, κ denotes a regular uncountable cardinal satisfying $\kappa^{<\kappa} = \kappa$.

The generalized Baire space

κ^κ consists of functions from κ to κ, and a basic open set takes the form

$$N_\eta := \{ f \in \kappa^\kappa \mid \eta \subseteq f \},$$

where $\eta \in <\kappa \kappa$, i.e., η is a function from an ordinal $<\kappa$ to κ.

The generalized Cantor space (The κ-antor space)

2^κ is the topological subspace of κ^κ consisting of all functions from κ to 2.
Throughout, κ denotes a regular uncountable cardinal satisfying $\kappa^{<\kappa} = \kappa$.

The generalized Baire space (The κ-aire space)

κ^κ consists of functions from κ to κ, and a basic open set takes the form

$$N_\eta := \{ f \in \kappa^\kappa \mid \eta \subseteq f \},$$

where $\eta \in ^{<\kappa}\kappa$, i.e., η is a function from an ordinal $^{<\kappa}$ to κ.

The generalized Cantor space (The κ-antor space)

2^κ is the topological subspace of κ^κ consisting of all functions from κ to 2.
The class of κ-Borel sets

The least collection of sets in κ^κ (resp., 2^κ) containing all open sets that is closed under unions and intersections of length $\leq \kappa$, and complements.
The class of \(\kappa \)-Borel sets

The least collection of sets in \(\kappa^\kappa \) (resp., \(2^\kappa \)) containing all open sets that is closed under unions and intersections of length \(\leq \kappa \), and complements.

\(\kappa \)-Borel functions

Let \(X_1, X_2 \in \{2^\kappa, \kappa^\kappa\} \). A function \(f : X_1 \to X_2 \) is \(\kappa \)-Borel iff for every open set \(U \subseteq X_2 \), the inverse image \(f^{-1}U \) is a \(\kappa \)-Borel subset of \(X_1 \).
The class of κ-Borel sets

The least collection of sets in κ^κ (resp., 2^{κ}) containing all open sets that is closed under unions and intersections of length $\leq \kappa$, and complements.

κ-Borel functions

Let $X_1, X_2 \in \{2^\kappa, \kappa^\kappa\}$. A function $f : X_1 \to X_2$ is κ-Borel iff for every open set $U \subseteq X_2$, the inverse image $f^{-1}“U$ is a κ-Borel subset of X_1.

Borel reductions and continuous reductions

Let E_1 and E_2 be equivalence relations on $X_1, X_2 \in \{2^\kappa, \kappa^\kappa\}$, respectively.

- We say that E_1 is κ-Borel reducible to E_2 and denote this by $E_1 \hookrightarrow_B E_2$ iff there is a κ-Borel function $f : X_1 \to X_2$ s.t. $\forall \eta, \xi \in X_1, (\eta, \xi) \in E_1 \iff (f(\eta), f(\xi)) \in E_2$.
The class of κ-Borel sets

The least collection of sets in κ^κ (resp., 2^κ) containing all open sets that is closed under unions and intersections of length $\leq \kappa$, and complements.

κ-Borel functions

Let $X_1, X_2 \in \{2^\kappa, \kappa^\kappa\}$. A function $f : X_1 \to X_2$ is κ-Borel iff for every open set $U \subseteq X_2$, the inverse image $f^{-1}\{U\}$ is a κ-Borel subset of X_1.

Borel reductions and continuous reductions

Let E_1 and E_2 be equivalence relations on $X_1, X_2 \in \{2^\kappa, \kappa^\kappa\}$, respectively.

- We say that E_1 is κ-Borel reducible to E_2 and denote this by $E_1 \leftrightarrow^B E_2$ iff there is a κ-Borel function $f : X_1 \to X_2$ s.t. $\forall \eta, \xi \in X_1$, $(\eta, \xi) \in E_1 \iff (f(\eta), f(\xi)) \in E_2$. We call f a reduction of E_1 to E_2.

- If f is moreover continuous, then we say that E_1 is continuously reducible to E_2 and denote it by $E_1 \leftrightarrow^c E_2$.

Assaf Rinot (Bar-Ilan University) Analytic quasi-orders and two diamonds May, 2019 4 / 18
\(\kappa \)-Borel

The class of \(\kappa \)-Borel sets

The least collection of sets in \(\kappa^\kappa \) (resp., \(2^\kappa \)) containing all open sets that is closed under unions and intersections of length \(\leq \kappa \), and complements.

\(\kappa \)-Borel functions

Let \(X_1, X_2 \in \{2^\kappa, \kappa^\kappa\} \). A function \(f : X_1 \to X_2 \) is \(\kappa \)-Borel iff for every open set \(U \subseteq X_2 \), the inverse image \(f^{-1} U \) is a \(\kappa \)-Borel subset of \(X_1 \).

Borel reductions and continuous reductions

Let \(E_1 \) and \(E_2 \) be equivalence relations on \(X_1, X_2 \in \{2^\kappa, \kappa^\kappa\} \), respectively.

- We say that \(E_1 \) is \(\kappa \)-Borel reducible to \(E_2 \) and denote this by \(E_1 \hookrightarrow_B E_2 \) iff there is a \(\kappa \)-Borel function \(f : X_1 \to X_2 \) s.t. \(\forall \eta, \xi \in X_1, (\eta, \xi) \in E_1 \iff (f(\eta), f(\xi)) \in E_2 \). We call \(f \) a reduction of \(E_1 \) to \(E_2 \).

- If \(f \) is moreover continuous, then we say that \(E_1 \) is continuously reducible to \(E_2 \) and denote it by \(E_1 \hookrightarrow_c E_2 \).
Comparing theories

Let T, T' denote complete theories over a countable first-order language.

Counting number of non-isomorphic models of cardinality κ

Say that T' is more complex than T iff $I(T', \kappa)$ is bigger than $I(T, \kappa)$.
Comparing theories

Let T, T' denote complete theories over a countable first-order language.

Counting number of non-isomorphic models of cardinality κ

Say that T' is more complex than T iff $I(T', \kappa)$ is bigger than $I(T, \kappa)$.

Shelah’s Main Gap Theorem implies that this notion is not very informative.

Theorem (Shelah, 1990)

One of the following holds:

1. $I(T, \aleph_\alpha) < \beth_1(|\alpha|)$ for every nonzero ordinal α.
2. $I(T, \kappa) = 2^\kappa$ for every uncountable cardinal κ.
Comparing theories

Let T, T' denote complete theories over a countable first-order language.

Counting number of non-isomorphic models of cardinality κ

Say that T' is more complex than T iff $I(T', \kappa)$ is bigger than $I(T, \kappa)$.

Shelah’s Main Gap Theorem implies that this notion is not very informative.

Theorem (Shelah, 1990)

One of the following holds:

1. T is shallow superstable without DOP and without OTOP. In this case, $I(T, \aleph_\alpha) < \beth_1(|\alpha|)$ for every nonzero ordinal α.
2. T is not superstable, or superstable and deep or with DOP or with OTOP. In this case, $I(T, \kappa) = 2^\kappa$ for every uncountable cardinal κ.

Assaf Rinot (Bar-Ilan University) Analytic quasi-orders and two diamonds May, 2019 5 / 18
Comparing theories via GDST

At the outset, fix a bijection $\pi : \kappa^{<\omega} \leftrightarrow \kappa$. For each m, let n_m denote the arity of P_m. Every element ξ of 2^κ gives rise to a model $M_\xi = (\kappa, ...)$ over L via:

$$(a_1, ..., a_{n_m}) \in P_{M_\xi m} \iff n = n_m \land \xi(\pi(m, a_1, ..., a_{n_m})) = 1.$$

Conversely, for every model $M = (\kappa, ...)$ over L, there is $\xi \in 2^\kappa$ such that $M = M_\xi$. Every theory determines an equivalence relation on 2^κ for a theory T over L, and $\eta, \xi \in 2^\kappa$, let $\eta \sim_T = \xi$ iff one of the two holds:

- $M_\eta | = T$ and $M_\xi | = T$ and $M_\xi \sim = M_\eta$,
- $M_\eta \neq | = T$ and $M_\xi \neq | = T$.

Assaf Rinot (Bar-Ilan University)
Analytic quasi-orders and two diamonds
May, 2019 6 / 18
Comparing theories via GDST

At the outset, fix a bijection $\pi : \kappa^{<\omega} \leftrightarrow \kappa$.
Consider a countable first-order relational language $\mathcal{L} = \{P_m \mid m < \omega\}$.
For each m, let n_m denote the arity of P_m.
Comparing theories via GDST

At the outset, fix a bijection $\pi : \kappa^{<\omega} \leftrightarrow \kappa$.
Consider a countable first-order relational language $L = \{P_m \mid m < \omega\}$.
For each m, let n_m denote the arity of P_m.
Every element ξ of 2^κ gives rise to a model $M_\xi = (\kappa, \ldots)$ over L via:

$$(a_1, \ldots, a_n) \in P_m^{M_\xi} \text{ iff } n = n_m \& \xi(\pi(m, a_1, \ldots, a_n)) = 1.$$
Comparing theories via GDST

At the outset, fix a bijection $\pi : \kappa^{<\omega} \leftrightarrow \kappa$.
Consider a countable first-order relational language $\mathcal{L} = \{ P_m \mid m < \omega \}$.
For each m, let n_m denote the arity of P_m.

Every element ξ of 2^κ gives rise to a model $M_\xi = (\kappa, \ldots)$ over \mathcal{L} via:

$$(a_1, \ldots, a_n) \in P_m^{M_\xi} \text{ iff } n = n_m \& \xi(\pi(m, a_1, \ldots, a_n)) = 1.$$

Conversely, for every model $M = (\kappa, \ldots)$ over \mathcal{L}, there is $\xi \in 2^\kappa$ such that $M = M_\xi$.

Comparing theories via GDST

At the outset, fix a bijection $\pi : \kappa^{<\omega} \leftrightarrow \kappa$. Consider a countable first-order relational language $\mathcal{L} = \{P_m \mid m < \omega\}$. For each m, let n_m denote the arity of P_m.

Every element ξ of 2^κ gives rise to a model $\mathcal{M}_\xi = (\kappa, \ldots)$ over \mathcal{L} via:

$$(a_1, \ldots, a_n) \in P^\mathcal{M}_\xi_m \text{ iff } n = n_m \& \xi(\pi(m, a_1, \ldots, a_n)) = 1.$$

Conversely, for every model $\mathcal{M} = (\kappa, \ldots)$ over \mathcal{L}, there is $\xi \in 2^\kappa$ such that $\mathcal{M} = \mathcal{M}_\xi$.

Every theory determines an equivalence relation on 2^κ

For a theory T over \mathcal{L}, and $\eta, \xi \in 2^\kappa$, let $\eta \equiv_T \xi$ iff one of the two holds:
Comparing theories via GDST

At the outset, fix a bijection $\pi: \kappa^<\omega \leftrightarrow \kappa$. Consider a countable first-order relational language $\mathcal{L} = \{ P_m \mid m < \omega \}$. For each m, let n_m denote the arity of P_m.

Every element ξ of 2^κ gives rise to a model $\mathcal{M}_\xi = (\kappa, \ldots)$ over \mathcal{L} via:

$$(a_1, \ldots, a_n) \in P_m^{\mathcal{M}_\xi} \text{ iff } n = n_m \& \xi(\pi(m, a_1, \ldots, a_n)) = 1.$$

Conversely, for every model $\mathcal{M} = (\kappa, \ldots)$ over \mathcal{L}, there is $\xi \in 2^\kappa$ such that $\mathcal{M} = \mathcal{M}_\xi$.

Every theory determines an equivalence relation on 2^κ

For a theory T over \mathcal{L}, and $\eta, \xi \in 2^\kappa$, let $\eta \equiv_T \xi$ iff one of the two holds:

- $\mathcal{M}_\eta \models T$ and $\mathcal{M}_\xi \models T$ and $\mathcal{M}_\xi \cong \mathcal{M}_\eta$, or
Comparing theories via GDST

At the outset, fix a bijection $\pi : \kappa^{<\omega} \leftrightarrow \kappa$.
Consider a countable first-order relational language $\mathcal{L} = \{P_m \mid m < \omega\}$.
For each m, let n_m denote the arity of P_m.

Every element ξ of 2^κ gives rise to a model $\mathcal{M}_\xi = (\kappa, \ldots)$ over \mathcal{L} via:

$$(a_1, \ldots, a_n) \in P_m^{\mathcal{M}_\xi} \text{ iff } n = n_m \& \xi(\pi(m, a_1, \ldots, a_n)) = 1.$$

Conversely, for every model $\mathcal{M} = (\kappa, \ldots)$ over \mathcal{L}, there is $\xi \in 2^\kappa$ such that $\mathcal{M} = \mathcal{M}_\xi$.

Every theory determines an equivalence relation on 2^κ

For a theory T over \mathcal{L}, and $\eta, \xi \in 2^\kappa$, let $\eta \equiv_T \xi$ iff one of the two holds:

- $\mathcal{M}_\eta \models T$ and $\mathcal{M}_\xi \models T$ and $\mathcal{M}_\xi \equiv \mathcal{M}_\eta$, or

- $\mathcal{M}_\eta \not\models T$ and $\mathcal{M}_\xi \not\models T$.

Comparing theories via GDST (cont.)

Recall

For a countable first-order relational T and $\eta, \xi \in 2^\kappa$, let $\eta \equiv_T \xi$ iff:

- $M_\eta \models T$ and $M_\xi \models T$ and $M_\xi \cong M_\eta$, or
- $M_\eta \not\models T$ and $M_\xi \not\models T$.

Define a quasi-order \leq_κ on complete countable relational theories, letting

$$T \leq_\kappa T' \iff \equiv_T \rightarrow B \equiv_{T'}.$$
Comparing theories via GDST (cont.)

Recall

For a countable first-order relational T and $\eta, \xi \in 2^\kappa$, let $\eta \equiv_T \xi$ iff:

- $M_\eta \models T$ and $M_\xi \models T$ and $M_\xi \equiv M_\eta$, or
- $M_\eta \not\models T$ and $M_\xi \not\models T$.

Define a quasi-order \leq_κ on complete countable relational theories, letting

$$T \leq_\kappa T' \text{ iff } \equiv_T \rightarrow B \equiv_T T'.$$

A successful approach

- (Friedman-Hyttinen-Kulikov, 2014) If T is unstable and T' is classifiable, then $T \not\leq_\kappa T'$.
- (Hyttinen-Kulikov-Moreno, 2017) Consistently (e.g., under $V = L$), if T is classifiable but T' is not, then $T \leq_\kappa T'$ and $T' \not\leq_\kappa T$.
- (Asperó-Hyttinen-Kulikov-Moreno, 2019) If κ is Π^1_2-indescribable, for every theory T, $T \leq_\kappa \text{ DLO}$ (dense lin. orders without endpoints).
A natural equivalence relation

Let S denote an arbitrary stationary subset of κ.

An equivalence relation on κ^κ

For $\eta, \xi \in \kappa^\kappa$, let $\eta =_S \xi$ iff $\{\alpha \in S \mid \eta(\alpha) \neq \xi(\alpha)\}$ is nonstationary.
A natural equivalence relation

Let S denote an arbitrary stationary subset of κ.

An equivalence relation on κ^κ

For $\eta, \xi \in \kappa^\kappa$, let $\eta =_S \xi$ iff $\{ \alpha \in S \mid \eta(\alpha) \neq \xi(\alpha) \}$ is nonstationary.

An equivalence relation on 2^κ

For $\eta, \xi \in 2^\kappa$, let $\eta =_S^2 \xi$ iff $\{ \alpha \in S \mid \eta(\alpha) \neq \xi(\alpha) \}$ is nonstationary.
A natural equivalence relation

Let S denote an arbitrary stationary subset of κ.

An equivalence relation on κ^κ

For $\eta, \xi \in \kappa^\kappa$, let $\eta \approx_S \xi$ iff $\{\alpha \in S \mid \eta(\alpha) \neq \xi(\alpha)\}$ is nonstationary.

Theorem (Hyttinen-Moreno, 2017)

If T is a complete classifiable theory, then $\approx_T \hookrightarrow_c \simeq_S$.

An equivalence relation on 2^κ

For $\eta, \xi \in 2^\kappa$, let $\eta \approx_2 \xi$ iff $\{\alpha \in S \mid \eta(\alpha) \neq \xi(\alpha)\}$ is nonstationary.

Theorem (Friedman-Hyttinen-Kulikov, 2014)

*If T is a complete classifiable theory, then $\approx_2 \not\hookrightarrow_B \simeq_T$.***
A natural equivalence relation

Let S denote an arbitrary stationary subset of κ.

An equivalence relation on κ^κ

For $\eta, \xi \in \kappa^\kappa$, let $\eta \equiv_S \xi$ iff $\{ \alpha \in S \mid \eta(\alpha) \neq \xi(\alpha) \}$ is nonstationary.

Theorem (Hyttinen-Moreno, 2017)

*If T is a complete classifiable theory, then $\equiv_T \rightarrow_c \equiv = S$.***

Theorem (Friedman-Hyttinen-Kulikov, 2014)

*Consistently, if T is a complete non-classifiable theory, then there exists a stationary $S \subseteq \kappa$ for which $\equiv_2 S \leftrightarrow B \equiv = T$.***

Theorem (Friedman-Hyttinen-Kulikov, 2014)

*If T is a complete classifiable theory, then $\equiv_2 S \not\leftrightarrow B \equiv = T$.***
A natural equivalence relation

Let S denote an arbitrary stationary subset of κ.

An equivalence relation on κ^κ

For $\eta, \xi \in \kappa^\kappa$, let $\eta =_S \xi$ iff $\{\alpha \in S \mid \eta(\alpha) \neq \xi(\alpha)\}$ is nonstationary.

Theorem (Hyttinen-Moreno, 2017)

If T is a complete classifiable theory, then $\cong_T \hookrightarrow_c =_S$.

Theorem (Friedman-Hyttinen-Kulikov, 2014)

Consistently, if T is a complete non-classifiable theory, then there exists a stationary $S \subseteq \kappa$ for which $=^2_S \hookrightarrow_B =_T$.

Problem

Does $=_S \hookrightarrow_B =^2_S$?
A natural equivalence relation

Let S denote an arbitrary stationary subset of κ.

An equivalence relation on κ^κ

For $\eta, \xi \in \kappa^\kappa$, let $\eta \equiv_S \xi$ iff $\{\alpha \in S \mid \eta(\alpha) \neq \xi(\alpha)\}$ is nonstationary.

Theorem (Hyttinen-Kulikov-Moreno, 2018)

If T is a complete classifiable theory and \diamondsuit_S, then $\cong_T \hookrightarrow c \equiv \kappa^2_S$.

Theorem (Friedman-Hyttinen-Kulikov, 2014)

Consistently, if T is a complete non-classifiable theory, then there exists a stationary $S \subseteq \kappa$ for which $\equiv_S^2 \hookrightarrow B \cong_T$.

Problem

Does $\equiv_S \hookrightarrow B \equiv_S^2$?
A natural equivalence relation

An equivalence relation on κ^κ

For $\eta, \xi \in \kappa^\kappa$, let $\eta \equiv_S \xi$ iff $\{\alpha \in S | \eta(\alpha) \neq \xi(\alpha)\}$ is nonstationary.

Theorem (Hyttinen-Kulikov-Moreno, 2018)

If T is a complete classifiable theory and \diamondsuit_S, then $\models_T \leftrightarrow_c 2^S$.

Theorem (Friedman-Hyttinen-Kulikov, 2014)

Consistently, if T is a complete non-classifiable theory, then there exists a stationary $S \subseteq \kappa$ for which $\models_{2^S} \leftrightarrow_B \models_T$.

So, consistently, for T classifiable and T' non-classifiable, for some $S \subseteq \kappa$:

$\models_T \leftrightarrow_c 2^S \leftrightarrow_B \models_{T'}$
Comparing the natural equivalence relations

A large antichain (Friedman-Hyttinen-Kulikov, 2014)

Consistently, there exists a collection S of 2^κ many stationary subsets of κ such that, for all $S \neq S'$ from S, $=^{2^\kappa}_S \leftrightarrow_B =^{2^\kappa}_{S'}$.

Comparability is possible as well

If $V = L$, then for all two stationary S, $S' \subseteq \kappa$, $=^{2^\kappa}_S \leftrightarrow c =^{2^\kappa}_{S'}$.

This improves a result from [Hyttinen-Kulikov-Moreno, 2018]. Also, the proof is different. The proof works locally as an application of two strong diamond principles at level κ. In particular, it is not limited to L.

Why two? One for ineffable sets and one for stationary non-ineffable.

We'll say more about this later on.
Comparing the natural equivalence relations

A large antichain (Friedman-Hyttinen-Kulikov, 2014)

Consistently, there exists a collection S of 2^κ many stationary subsets of κ such that, for all $S \neq S'$ from S, $\mathrel{\lambda_{S}} \mathrel{\leftrightarrow_{\mathcal{B}}} \mathrel{\lambda_{S'}}$.

Comparability is possible as well

If $V = L$, then for all two stationary $S, S' \subseteq \kappa$, $\mathrel{\lambda_{S}} \mathrel{\leftrightarrow_{\mathcal{C}}} \mathrel{\lambda_{S'}}$.
Comparing the natural equivalence relations

A large antichain (Friedman-Hyttinen-Kulikov, 2014)

Consistently, there exists a collection \(S \) of \(2^\kappa \) many stationary subsets of \(\kappa \) such that, for all \(S \neq S' \) from \(S \), \(\frac{2^\kappa}{S} \leftrightarrow_B \frac{2^\kappa}{S'} \).

Comparability is possible as well

If \(V = L \), then for all two stationary \(S, S' \subseteq \kappa \), \(\frac{2^\kappa}{S} \leftrightarrow_c \frac{2^\kappa}{S'} \).

This improves a result from [Hyttinen-Kulikov-Moreno, 2018]. Also, the proof is different.

- The proof works locally as an application of two strong diamond principles at level \(\kappa \). In particular, it is not limited to \(L \).
Comparing the natural equivalence relations

A large antichain (Friedman-Hyttinen-Kulikov, 2014)

Consistently, there exists a collection S of 2^κ many stationary subsets of κ such that, for all $S \neq S'$ from S, $=^2_S \leftrightarrow_B =^2_{S'}$.

Comparability is possible as well

If $V = L$, then for all two stationary $S, S' \subseteq \kappa$, $=^c_S \rightarrow =^2_{S'}$.

This improves a result from [Hyttinen-Kulikov-Moreno, 2018]. Also, the proof is different.

- The proof works locally as an application of two strong diamond principles at level κ. In particular, it is not limited to L.
- Why two? One for ineffable sets and one for stationary non-ineffable.
Comparing the natural equivalence relations

A large antichain (Friedman-Hyttinen-Kulikov, 2014)

Consistently, there exists a collection S of 2^κ many stationary subsets of κ such that, for all $S \neq S'$ from S, $=^2_S \not\leftrightarrow_B =^2_{S'}$.

Comparability is possible as well

If $V = L$, then for all two stationary $S, S' \subseteq \kappa$, $=_S \leftrightarrow_c =^2_{S'}$.

This improves a result from [Hyttinen-Kulikov-Moreno, 2018]. Also, the proof is different.

- The proof works locally as an application of two strong diamond principles at level κ. In particular, it is not limited to L.
- Why two? One for ineffable sets and one for stationary non-ineffable.

We’ll say more about this later on.
A simple test case

Let $S^2_0 := \{ \alpha < \omega_2 \mid \text{cf}(\alpha) = \omega \}$
and $S^2_1 := \{ \alpha < \omega_2 \mid \text{cf}(\alpha) = \omega_1 \}$.
A simple test case

Let $S^2_0 := \{ \alpha < \omega_2 \mid \text{cf}(\alpha) = \omega \}$
and $S^2_1 := \{ \alpha < \omega_2 \mid \text{cf}(\alpha) = \omega_1 \}$.

What can be said about the following statements?

1. $S^2_0 \rightarrow B = S^2_1$
A simple test case

Let $S_0^2 := \{ \alpha < \omega_2 \mid \text{cf}(\alpha) = \omega \}$
and $S_1^2 := \{ \alpha < \omega_2 \mid \text{cf}(\alpha) = \omega_1 \}$.

What can be said about the following statements?

1. $= S_0^2 \hookrightarrow B = S_1^2$
2. $= S_1^2 \hookrightarrow B = S_0^2$
A simple test case

Let $S_0^2 := \{ \alpha < \omega_2 \mid \text{cf}(\alpha) = \omega \}$
and $S_1^2 := \{ \alpha < \omega_2 \mid \text{cf}(\alpha) = \omega_1 \}$.

What can be said about the following statements?

1. $S_0^2 \hookrightarrow B = S_1^2$
2. $S_1^2 \hookrightarrow B = S_0^2$
3. $2^{S_0^2} \hookrightarrow B = 2^{S_1^2}$
4. $2^{S_1^2} \hookrightarrow B = 2^{S_0^2}$
A simple test case

Let $S_0^2 := \{ \alpha < \omega_2 \mid \text{cf}(\alpha) = \omega \}$ and $S_1^2 := \{ \alpha < \omega_2 \mid \text{cf}(\alpha) = \omega_1 \}$.

What can be said about the following statements?

1. $S_0^2 \hookrightarrow B = S_1^2$
2. $S_1^2 \hookrightarrow B = S_0^2$
3. $\mathbb{2} S_0^2 \hookrightarrow B = \mathbb{2} S_1^2$
4. $\mathbb{2} S_0^2 \hookrightarrow B = \mathbb{2} S_1^2$
5. $S_0^2 \hookrightarrow B = \mathbb{2} S_1^2$
6. $S_1^2 \hookrightarrow B = \mathbb{2} S_0^2$
Theorem (Friedman-Hyttinen-Kulikov, 2014)
There is a model of ZFC in which clauses (3) and (4) fail.

What can be said about the following statements?

1. $S_0 \rightarrow B \rightarrow S_1$
2. $S_1 \rightarrow B \rightarrow S_0$
3. $2_{S_0} \rightarrow B \rightarrow 2_{S_1}$
4. $2_{S_1} \rightarrow B \rightarrow 2_{S_0}$
5. $S_0 \rightarrow B \rightarrow 2_{S_1}$
6. $S_1 \rightarrow B \rightarrow 2_{S_0}$

Note that if Clause (1) holds in the F-H-K model, then $S_2 \rightarrow B \rightarrow 2_{S_2}$.
A simple test case

Theorem (Friedman-Hyttinen-Kulikov, 2014)
There is a model of ZFC in which clauses (3) and (4) fail.

What can be said about the following statements?

1. $s_0^2 \iff B = s_1^2$
2. $s_1^2 \iff B = s_0^2$
3. $2^{s_0} \iff B = 2^{s_1}$
4. $2^{s_0} \iff B = 2^{s_1}$
5. $s_0^2 \iff B = 2^{s_1}$
6. $s_1^2 \iff B = 2^{s_0}$

Note that if Clause (1) holds in the F-H-K model, then $=s_1^2 \not\iff B = 2^{s_1}$.
Stationary reflection principles and 2^κ

Friedman’s problem

For every stationary $S \subseteq \kappa \cap \text{cof}(\omega)$, there exists a strictly increasing and continuous map $\varphi : \omega_1 \to S$.

Observation

Friedman’s problem implies $2^\kappa \rightarrow 2^\omega$.

Proof.

Define a reduction $f : 2^{\omega_2} \rightarrow 2^{\omega_2}$, as follows. Given $\xi : \omega_2 \rightarrow 2$ and $\delta < \omega_2$, we let $f(\xi)(\delta) = 1$ iff $\delta \in S$ and $\{\alpha < \delta \mid \xi(\alpha) = 0\}$ is nonstationary in δ.

Note that $f(\xi)(\delta)$ depends only on $\xi|\delta$, so that f is continuous.
Stationary reflection principles and 2^κ

Friedman’s problem

For every stationary $S \subseteq \kappa \cap \text{cof}(\omega)$, there exists a strictly increasing and continuous map $\varphi : \omega_1 \to S$.

Observation

_Friedman’s problem implies $\kappa_0 \cL c \iff \kappa_1 \cL c$._

Proof. Define a reduction $f : 2^{\omega_2} \to 2^{\omega_2}$, as follows.
Friedman’s problem

For every stationary $S \subseteq \kappa \cap \text{cof}(\omega)$, there exists a strictly increasing and continuous map $\varphi : \omega_1 \to S$.

Observation

Friedman’s problem implies $\mathfrak{c} = \mathfrak{s}_0^2 \hookrightarrow \mathfrak{s}_1^2$.

Proof. Define a reduction $f : 2^{\omega_2} \to 2^{\omega_2}$, as follows.

Given $\xi : \omega_2 \to 2$ and $\delta < \omega_2$, we let $f(\xi)(\delta) = 1$ iff

$$\delta \in S_1^2 \text{ and } \{ \alpha < \delta \mid \xi(\alpha) = 0 \} \text{ is nonstationary in } \delta.$$
Stańtary refełction principles and 2^κ

Friedman’s problem

For every stationary $S \subseteq \kappa \cap \text{cof}(\omega)$, there exists a strictly increasing and continuous map $\varphi : \omega_1 \to S$.

Observation

Friedman’s problem implies $\Rightarrow S_0^2 \arrows c \Rightarrow S_1^2$.

Proof. Define a reduction $f : 2^{\omega_2} \to 2^{\omega_2}$, as follows.

Given $\xi : \omega_2 \to 2$ and $\delta < \omega_2$, we let $f(\xi)(\delta) = 1$ iff

- $\delta \in S_1^2$ and \{ $\alpha < \delta \mid \xi(\alpha) = 0$ \} is nonstationary in δ.

Note that $f(\xi)(\delta)$ depends only on $\xi \restriction \delta$, so that f is continuous.
Friedman’s problem

For every stationary $S \subseteq \kappa \cap \text{cof}(\omega)$, there exists a strictly increasing and continuous map $\varphi : \omega_1 \to S$.

Observation

Friedman’s problem implies $\mathcal{S}_0^2 \hookrightarrow c \mathcal{S}_1^2$.

Proof. Define a reduction $f : 2^{\omega_2} \to 2^{\omega_2}$, as follows.
Given $\xi : \omega_2 \to 2$ and $\delta < \omega_2$, we let $f(\xi)(\delta) = 1$ iff
$$\delta \in \mathcal{S}_1^2 \text{ and } \{\alpha < \delta \mid \xi(\alpha) = 0\} \text{ is nonstationary in } \delta.$$ Note that $f(\xi)(\delta)$ depends only on $\xi \upharpoonright \delta$, so that f is continuous.

Suppose $\xi \mathcal{S}_0^2 \circlearrowleft \eta$. Pick a club $C \subseteq \omega_2$ s.t. $\forall \alpha \in C \cap \mathcal{S}_0^2[\xi(\alpha) = \eta(\alpha)]$.

Assaf Rinot (Bar-Ilan University) Analytic quasi-orders and two diamonds May, 2019 11 / 18
Stationary reflection principles and 2^κ

Friedman’s problem

For every stationary $S \subseteq \kappa \cap \text{cof}(\omega)$, there exists a strictly increasing and continuous map $\varphi : \omega_1 \to S$.

Observation

Friedman’s problem implies $\{2_{S_0^2}\} \hookrightarrow c = 2_{S_1^2}$.

Proof. Define a reduction $f : 2^{\omega_2} \to 2^{\omega_2}$, as follows.

Given $\xi : \omega_2 \to 2$ and $\delta < \omega_2$, we let $f(\xi)(\delta) = 1$ iff

$\delta \in S_1^2$ and $\{\alpha < \delta \mid \xi(\alpha) = 0\}$ is nonstationary in δ.

Note that $f(\xi)(\delta)$ depends only on $\xi \upharpoonright \delta$, so that f is continuous.

- Suppose $\xi = \stackrel{2}{S_0^2} \eta$. Pick a club $C \subseteq \omega_2$ s.t. $\forall \alpha \in C \cap S_0^2[\xi(\alpha) = \eta(\alpha)]$.

Consider the club D of accumulation points of C. For any $\delta \in D \cap S_1^2$:
Stationary reflection principles and 2^κ

Friedman’s problem

For every stationary $S \subseteq \kappa \cap \text{cof}(\omega)$, there exists a strictly increasing and continuous map $\varphi : \omega_1 \rightarrow S$.

Observation

Friedman’s problem implies $2^{S_0} \cdot c = 2^{S_1}$.

Proof. Define a reduction $f : 2^{\omega_2} \rightarrow 2^{\omega_2}$, as follows.

Given $\xi : \omega_2 \rightarrow 2$ and $\delta < \omega_2$, we let $f(\xi)(\delta) = 1$ iff

$$\delta \in S_1^2 \text{ and } \{ \alpha < \delta \mid \xi(\alpha) = 0 \} \text{ is nonstationary in } \delta.$$

Note that $f(\xi)(\delta)$ depends only on $\xi \upharpoonright \delta$, so that f is continuous.

► Suppose $\xi = \frac{2}{S_0} \cdot \eta$. Pick a club $C \subseteq \omega_2$ s.t. $\forall \alpha \in C \cap S_0^2 [\xi(\alpha) = \eta(\alpha)]$.

Consider the club D of accumulation points of C. For any $\delta \in D \cap S_1^2$:

$f(\xi)(\delta) = 1$ iff $\{ \alpha \in C \cap \delta \mid \xi(\alpha) = 0 \}$ is nonstationary in δ iff

$\{ \alpha \in C \cap \delta \mid \eta(\alpha) = 0 \}$ is nonstationary in δ iff $f(\eta)(\delta) = 1$.
Stationary reflection principles and 2^κ

Friedman’s problem

For every stationary $S \subseteq \kappa \cap \text{cof}(\omega)$, there exists a strictly increasing and continuous map $\varphi : \omega_1 \to S$.

Observation

Friedman’s problem implies $\models 2^\omega_0 \leftrightarrow_\kappa 2^\omega_1$.

Proof. Define a reduction $f : 2^{\omega_2} \to 2^{\omega_2}$, as follows.

Given $\xi : \omega_2 \to 2$ and $\delta < \omega_2$, we let $f(\xi)(\delta) = 1$ iff

$$\delta \in S_1^2 \text{ and } \{\alpha < \delta \mid \xi(\alpha) = 0\} \text{ is nonstationary in } \delta.$$

Note that $f(\xi)(\delta)$ depends only on $\xi \upharpoonright \delta$, so that f is continuous.

- Suppose $\xi = 2^\omega_0 \eta$. Pick a club $C \subseteq \omega_2$ s.t. $\forall \alpha \in C \cap S_0^2[\xi(\alpha) = \eta(\alpha)]$.

Consider the club D of accumulation points of C. For any $\delta \in D \cap S_1^2$:

$f(\xi)(\delta) = 1$ iff $\{\alpha \in C \cap \delta \mid \xi(\alpha) = 0\}$ is nonstationary in δ iff $\{\alpha \in C \cap \delta \mid \eta(\alpha) = 0\}$ is nonstationary in δ iff $f(\eta)(\delta) = 1$.

Consequently, $f(\xi) = 2^\omega_0 \leftarrow_\kappa f(\eta)$.
Stationary reflection principles and 2^κ

Friedman’s problem

For every stationary $S \subseteq \kappa \cap \text{cof}(\omega)$, there exists a strictly increasing and continuous map $\varphi : \omega_1 \to S$.

Observation

Friedman’s problem implies $=^2_{S_0^2} \leftrightarrow_c =^2_{S_1^2}$.

Proof. Define a reduction $f : 2^{\omega_2} \to 2^{\omega_2}$, as follows. Given $\xi : \omega_2 \to 2$ and $\delta < \omega_2$, we let $f(\xi)(\delta) = 1$ iff

$$\delta \in S_1^2 \text{ and } \{\alpha < \delta \mid \xi(\alpha) = 0\} \text{ is nonstationary in } \delta.$$

Note that $f(\xi)(\delta)$ depends only on $\xi \upharpoonright \delta$, so that f is continuous.

Suppose $\xi \not\equiv_{S_0^2} \eta$. Say, $S := \{\alpha \in S_0^2 \mid \xi(\alpha) = 1 \& \eta(\alpha) = 0\}$ is stationary.
Friedman’s problem

For every stationary $S \subseteq \kappa \cap \text{cof}(\omega)$, there exists a strictly increasing and continuous map $\varphi : \omega_1 \to S$.

Observation

\textit{Friedman’s problem implies $\vdash_{S_0^2} \varphi \hookrightarrow c = _{S_1^2}^2$.}

Proof. Define a reduction $f : 2^{\omega_2} \to 2^{\omega_2}$, as follows.

Given $\xi : \omega_2 \to 2$ and $\delta < \omega_2$, we let $f(\xi)(\delta) = 1$ iff

$\delta \in S_1^2$ and $\{\alpha < \delta \mid \xi(\alpha) = 0\}$ is nonstationary in δ.

Note that $f(\xi)(\delta)$ depends only on $\xi \upharpoonright \delta$, so that f is continuous.

Suppose $\xi \not\in_{S_0^2} \eta$. Say, $S := \{\alpha \in S_0^2 \mid \xi(\alpha) = 1 \& \eta(\alpha) = 0\}$ is stationary.

Let D be an arbitrary club in ω_2.

Assaf Rinot (Bar-Ilan University)

Analytic quasi-orders and two diamonds

May, 2019 11 / 18
Stationary reflection principles and 2^κ

Friedman’s problem

For every stationary $S \subseteq \kappa \cap \text{cof}(\omega)$, there exists a strictly increasing and continuous map $\varphi : \omega_1 \to S$.

Observation

Friedman’s problem implies $\mathcal{P}^{2}_{S_0} \iff c = \mathcal{P}^{2}_{S_1}$.

Proof. Define a reduction $f : 2^{\omega_2} \to 2^{\omega_2}$, as follows. Given $\xi : \omega_2 \to 2$ and $\delta < \omega_2$, we let $f(\xi)(\delta) = 1$ iff

\[\delta \in S_1^2 \text{ and } \{ \alpha < \delta \mid \xi(\alpha) = 0 \} \text{ is nonstationary in } \delta. \]

Note that $f(\xi)(\delta)$ depends only on $\xi \upharpoonright \delta$, so that f is continuous.

▶ Suppose $\not\mathcal{P}^{2}_{S_0}\eta$. Say, $S := \{ \alpha \in S_0^2 \mid \xi(\alpha) = 1 \& \eta(\alpha) = 0 \}$ is stationary.

Let D be an arbitrary club in ω_2. Fix a strictly increasing and continuous map $\varphi : \omega_1 \to S \cap D$.

Assaf Rinot (Bar-Ilan University)

Analytic quasi-orders and two diamonds

May, 2019 11 / 18
Stationary reflection principles and 2^{κ}

Friedman’s problem

For every stationary $S \subseteq \kappa \cap \text{cof}(\omega)$, there exists a strictly increasing and continuous map $\varphi : \omega_1 \to S$.

Observation

Friedman’s problem implies $\models 2_{S_0^2} \leftrightarrow c \models 2_{S_1^2}$.

Proof. Define a reduction $f : 2^{\omega_2} \to 2^{\omega_2}$, as follows. Given $\xi : \omega_2 \to 2$ and $\delta < \omega_2$, we let $f(\xi)(\delta) = 1$ iff

$$\delta \in S_1^2 \text{ and } \{ \alpha < \delta \mid \xi(\alpha) = 0 \} \text{ is nonstationary in } \delta.$$

Note that $f(\xi)(\delta)$ depends only on $\xi \upharpoonright \delta$, so that f is continuous.

- Suppose $\xi \not\models_{S_0^2} \eta$. Say, $S := \{ \alpha \in S_0^2 \mid \xi(\alpha) = 1 \& \eta(\alpha) = 0 \}$ is stationary.

Let D be an arbitrary club in ω_2. Fix a strictly increasing and continuous map $\varphi : \omega_1 \to S \cap D$. Set $d := \text{Im}(\varphi)$, noting that $\delta := \text{sup}(d)$ is in $D \cap S_1^2$.

Stationary reflection principles and 2^κ

Friedman’s problem

For every stationary $S \subseteq \kappa \cap \text{cof}(\omega)$, there exists a strictly increasing and continuous map $\varphi : \omega_1 \rightarrow S$.

Observation

Friedman’s problem implies $=^2_{S^1_0} \subsetneq c =^2_{S^2_1}$.

Proof. Define a reduction $f : 2^{\omega_2} \rightarrow 2^{\omega_2}$, as follows.

Given $\xi : \omega_2 \rightarrow 2$ and $\delta < \omega_2$, we let $f(\xi)(\delta) = 1$ iff

$$\delta \in S^2_1 \text{ and } \{\alpha < \delta \mid \xi(\alpha) = 0\} \text{ is nonstationary in } \delta.$$

Note that $f(\xi)(\delta)$ depends only on $\xi \restriction \delta$, so that f is continuous.

\blacktriangleright Suppose $\xi \not\equiv^2_{S^2_0} \eta$. Say, $S := \{\alpha \in S^2_0 \mid \xi(\alpha) = 1 \& \eta(\alpha) = 0\}$ is stationary.

Let D be an arbitrary club in ω_2. Fix a strictly increasing and continuous map $\varphi : \omega_1 \rightarrow S \cap D$. Set $d := \text{Im}(\varphi)$, noting that $\delta := \sup(d)$ is in $D \cap S^2_1$.

Then d is a club in δ disjoint from $\{\alpha < \delta \mid \xi(\alpha) = 0\}$, so that $f(\xi)(\delta) = 1$.

Assaf Rinot (Bar-Ilan University) Analytic quasi-orders and two diamonds May, 2019 11 / 18
Stationary reflection principles and 2^{κ}

Friedman’s problem

For every stationary $S \subseteq \kappa \cap \text{cof}(\omega)$, there exists a strictly increasing and continuous map $\varphi : \omega_1 \to S$.

Observation

Friedman’s problem implies $2^{S_0} \prec_c 2^{S_1}$.

Proof. Define a reduction $f : 2^{\omega_2} \to 2^{\omega_2}$, as follows.

Given $\xi : \omega_2 \to 2$ and $\delta < \omega_2$, we let $f(\xi)(\delta) = 1$ if

$$\delta \in S_1^2 \quad \text{and} \quad \{\alpha < \delta \mid \xi(\alpha) = 0\} \text{ is nonstationary in } \delta.$$

Note that $f(\xi)(\delta)$ depends only on $\xi \restriction \delta$, so that f is continuous.

\blacktriangleright Suppose $\xi \not\in^2 S_0^2 \eta$. Say, $S := \{\alpha \in S_0^2 \mid \xi(\alpha) = 1 \& \eta(\alpha) = 0\}$ is stationary.

Let D be an arbitrary club in ω_2. Fix a strictly increasing and continuous map $\varphi : \omega_1 \to S \cap D$. Set $d := \text{Im}(\varphi)$, noting that $\delta := \text{sup}(d)$ is in $D \cap S_1^2$. Then d is a club in δ disjoint from $\{\alpha < \delta \mid \xi(\alpha) = 0\}$, so that $f(\xi)(\delta) = 1$.

In contrast, $\{\alpha < \delta \mid \eta(\alpha) = 0\}$ contains the club d, so that $f(\eta)(\delta) = 0$.

Assaf Rinot (Bar-Ilan University) Analytic quasi-orders and two diamonds May, 2019 11 / 18
Friedman’s problem yields a reduction on the κ-antor space, 2^κ. Moreno proved that, for κ accessible, $=_{S} \leftrightarrow_c =_{S'}$, entails $=_{S} \leftrightarrow_c =_{S'}$. The latter (i.e., reduction in κ^κ) already follows from vanilla reflection:
Stationary reflection principles and κ^κ

Friedman’s problem yields a reduction on the κ-antor space, 2^κ.
Moreno proved that, for κ accessible, $=^2_S \leftrightarrow_c =^2_{S'}$, entails $=^S \leftrightarrow_c =^S'$. The latter (i.e., reduction in κ^κ) already follows from vanilla reflection:

If every stationary subset of S_0^2 reflects in S_1^2, then $=^{S_0^2} \leftrightarrow_c =^{S_1^2}$.
Stationary reflection principles and κ^κ

Friedman’s problem yields a reduction on the κ-antor space, 2^κ.
Moreno proved that, for κ accessible, $=_{2^S} \hookrightarrow_c =_{2^{S'}}$, entails $=_{2^S} \hookrightarrow_c =_{2^{S'}}$.
The latter (i.e., reduction in κ^κ) already follows from vanilla reflection:

*If every stationary subset of S_0^2 reflects in S_1^2, then $=_{S_0^2} \hookrightarrow_c =_{S_1^2}$.***

More generally:

Theorem (Asperó-Hyttinen-Kulikov-Moreno, 2019)

*Suppose X, S are stationary subsets of κ, with $S \subseteq \text{cof}(>\omega)$.
If every stationary subset of X reflects in S, then $=_{X} \hookrightarrow_c =_{S}$.***
Stationary reflection principles and κ^κ

Friedman’s problem yields a reduction on the κ-antor space, 2^κ.
Moreno proved that, for κ accessible, $=_{S_0}^2 \rightarrow_c =_{S_1}^2$, entails $=_{S_0} \rightarrow_c =_{S_1}$.
The latter (i.e., reduction in κ^κ) already follows from vanilla reflection:

If every stationary subset of S_0^2 reflects in S_1^2, then $=_{S_0}^2 \rightarrow_c =_{S_1}^2$.

More generally:

Theorem (Asperó-Hyttinen-Kulikov-Moreno, 2019)

Suppose X, S are stationary subsets of κ, with $S \subseteq \text{cof}(>\omega)$.
If every stationary subset of X reflects in S, then $=_X \rightarrow_c =_S$.

Bear with me, as I overcomplicate their proof...
Reflection principles and reductions on κ^{κ}

Suppose X, S are stationary subsets of κ, with $S \subseteq \text{cof}(\omega^2)$. For any ordinal δ, let \mathcal{F}_δ denote the club filter on δ.
Reflection principles and reductions on κ^κ

Suppose X, S are stationary subsets of κ, with $S \subseteq \text{cof}(>\omega)$. For any ordinal δ, let \mathcal{F}_δ denote the club filter on δ.

The following are equivalent

- Every stationary subset of X reflects in S.

Assaf Rinot (Bar-Ilan University)

Analytic quasi-orders and two diamonds

May, 2019 13 / 18
Reflection principles and reductions on κ^κ

Suppose X, S are stationary subsets of κ, with $S \subseteq \text{cof}(>\omega)$. For any ordinal δ, let \mathcal{F}_δ denote the club filter on δ.

The following are equivalent

- Every stationary subset of X reflects in S.
- For every stat. $Y \subseteq X$, there are stat. many $\delta \in S$ s.t. $Y \cap \delta \in \mathcal{F}_\delta^+$
Reflection principles and reductions on κ^{κ}

Suppose X, S are stationary subsets of κ, with $S \subseteq \text{cof}(\omega)$. For any ordinal δ, let \mathcal{F}_δ denote the club filter on δ.

The following are equivalent

- Every stationary subset of X reflects in S.
- For every stat. $Y \subseteq X$, there are stat. many $\delta \in S$ s.t. $Y \cap \delta \in \mathcal{F}_\delta^+$ and, for every club $C \subseteq \kappa$, there are club many $\delta \in S$ s.t. $C \cap \delta \in \mathcal{F}_\delta$.
Reflection principles and reductions on κ^κ

Suppose X, S are stationary subsets of κ, and
$$\vec{\mathcal{F}} = \langle \mathcal{F}_\delta \mid \delta \in S \rangle$$
is a sequence such that each \mathcal{F}_δ is a filter on δ.

Filter reflection (aka, Fake reflection)

We say that $X \vec{\mathcal{F}}$-reflects to S iff the two hold:

1. For every stat. $Y \subseteq X$, there are stat. many $\delta \in S$ s.t. $Y \cap \delta \in \mathcal{F}_\delta^+$;
2. For every club $C \subseteq \kappa$, there are club many $\delta \in S$ s.t. $C \cap \delta \in \mathcal{F}_\delta$.
Reflection principles and reductions on κ^κ

Suppose X, S are stationary subsets of κ, and $\vec{F} = \langle F_\delta \mid \delta \in S \rangle$ is a sequence such that each F_δ is a filter on δ.

Filter reflection (aka, Fake reflection)

We say that $X \vec{F}$-reflects to S iff the two hold:

1. For every stat. $Y \subseteq X$, there are stat. many $\delta \in S$ s.t. $Y \cap \delta \in F_\delta^+$;
2. For every club $C \subseteq \kappa$, there are club many $\delta \in S$ s.t. $C \cap \delta \in F_\delta$.

Proposition

If there exists \vec{F} such that $X \vec{F}$-reflects to S, then $= X \leftrightarrow_c = S$.
Reflection principles and reductions on κ^κ

Suppose X, S are stationary subsets of κ, and $\vec{F} = \langle F_\delta \mid \delta \in S \rangle$ is a sequence such that each F_δ is a filter on δ.

Filter reflection (aka, Fake reflection)

We say that X \vec{F}-reflects to S iff the two hold:

1. For every stat. $Y \subseteq X$, there are stat. many $\delta \in S$ s.t. $Y \cap \delta \in F_\delta^+$;
2. For every club $C \subseteq \kappa$, there are club many $\delta \in S$ s.t. $C \cap \delta \in F_\delta$.

Proposition

If there exists \vec{F} such that X \vec{F}-reflects to S, then $\models_X \langle \Rightarrow_c \rangle = S$.

Proof. For $\delta \in S$ and $\eta, \xi \in ^\delta \kappa$, let $\eta \sim_\delta \xi$ iff $\{ \alpha < \delta \mid \eta(\alpha) = \xi(\alpha) \} \in F_\delta$.
Suppose X, S are stationary subsets of κ, and
$$\vec{F} = \langle F_\delta \mid \delta \in S \rangle$$
is a sequence such that each F_δ is a filter on δ.

Filter reflection (aka, Fake reflection)

We say that X \(\vec{F}\)-reflects to S iff the two hold:

1. For every stat. $Y \subseteq X$, there are stat. many $\delta \in S$ s.t. $Y \cap \delta \in F_\delta^+$;
2. For every club $C \subseteq \kappa$, there are club many $\delta \in S$ s.t. $C \cap \delta \in F_\delta$.

Proposition

If there exists \vec{F} such that X \(\vec{F}\)-reflects to S, then $X \hookrightarrow_c = S$.

Proof. For $\delta \in S$ and $\eta, \xi \in ^\delta \kappa$, let $\eta \sim_\delta \xi$ iff $\{ \alpha < \delta \mid \eta(\alpha) = \xi(\alpha) \} \in F_\delta$.

Evidently, $|{}^\delta \kappa/ \sim_\delta| \leq \kappa^{<\kappa} = \kappa$, so we may identify $\bigcup_{\delta \in S} {}^\delta \kappa/ \sim_\delta$ with κ.

Assaf Rinot (Bar-Ilan University) Analytic quasi-orders and two diamonds May, 2019 13 / 18
Reflection principles and reductions on κ^{κ}

Suppose X, S are stationary subsets of κ, and $\vec{\mathcal{F}} = \langle \mathcal{F}_\delta \mid \delta \in S \rangle$ is a sequence such that each \mathcal{F}_δ is a filter on δ.

Filter reflection (aka, Fake reflection)

We say that X $\vec{\mathcal{F}}$-reflects to S iff the two hold:

1. For every stat. $Y \subseteq X$, there are stat. many $\delta \in S$ s.t. $Y \cap \delta \in \mathcal{F}_\delta^+$;
2. For every club $C \subseteq \kappa$, there are club many $\delta \in S$ s.t. $C \cap \delta \in \mathcal{F}_\delta$.

Proposition

If there exists $\vec{\mathcal{F}}$ such that X $\vec{\mathcal{F}}$-reflects to S, then $=X \hookrightarrow c = s$.

Proof. For $\delta \in S$ and $\eta, \xi \in \delta^{\kappa}$, let $\eta \sim_\delta \xi$ iff $\{ \alpha < \delta \mid \eta(\alpha) = \xi(\alpha) \} \in \mathcal{F}_\delta$. Evidently, $|^{\delta^{\kappa}}/\sim_\delta| \leq \kappa^{<\kappa} = \kappa$, so we may identify $\bigcup_{\delta \in S}^{\delta^{\kappa}}/\sim_\delta$ with κ.

Define a continuous map $f : \kappa^{\kappa} \to \kappa^{\kappa}$ by letting $f(\xi)(\delta) = [\xi \upharpoonright \delta]_{\sim_\delta}$.
Reflection principles and reductions on κ^κ

Suppose X, S are stationary subsets of κ, and $
\vec{\mathcal{F}} = \langle \mathcal{F}_\delta \mid \delta \in S \rangle$

is a sequence such that each \mathcal{F}_δ is a filter on δ.

Filter reflection (aka, Fake reflection)

We say that $X \vec{\mathcal{F}}$-reflects to S iff the two hold:

1. For every stat. $Y \subseteq X$, there are stat. many $\delta \in S$ s.t. $Y \cap \delta \in \mathcal{F}_\delta^+$;
2. For every club $C \subseteq \kappa$, there are club many $\delta \in S$ s.t. $C \cap \delta \in \mathcal{F}_\delta$.

Proposition

If there exists $\vec{\mathcal{F}}$ such that $X \vec{\mathcal{F}}$-reflects to S, then $\models_X c \leftrightarrow s$.

Proof. For $\delta \in S$ and $\eta, \xi \in \delta^\kappa$, let $\eta \sim_\delta \xi$ iff \{\(\alpha < \delta \mid \eta(\alpha) = \xi(\alpha)\}\} \in \mathcal{F}_\delta$.

Evidently, $|\delta^\kappa/\sim_\delta| \leq \kappa^{<\kappa} = \kappa$, so we may identify $\bigcup_{\delta \in S} \delta^\kappa/\sim_\delta$ with κ.

Define a continuous map $f : \kappa^\kappa \to \kappa^\kappa$ by letting $f(\xi)(\delta) = [\xi \upharpoonright \delta]_{\sim_\delta}$.

\[\text{If } \xi \models_X \eta, \text{ then, by Clause (2), } f(\xi) =_S f(\eta).\]
Reflection principles and reductions on κ^{κ}

Suppose X, S are stationary subsets of κ, and $\vec{F} = \langle F_\delta \mid \delta \in S \rangle$ is a sequence such that each F_δ is a filter on δ.

Filter reflection (aka, Fake reflection)

We say that $X \vec{F}$-reflects to S iff the two hold:

1. For every stat. $Y \subseteq X$, there are stat. many $\delta \in S$ s.t. $Y \cap \delta \in F_\delta^+$;
2. For every club $C \subseteq \kappa$, there are club many $\delta \in S$ s.t. $C \cap \delta \in F_\delta$.

Proposition

If there exists \vec{F} such that $X \vec{F}$-reflects to S, then $=_X \leftrightarrow_c =_S$.

Proof. For $\delta \in S$ and $\eta, \xi \in \delta^{<\kappa}$, let $\eta \sim_\delta \xi$ iff $\{ \alpha < \delta \mid \eta(\alpha) = \xi(\alpha) \} \in F_\delta$.

Evidently, $|\delta^{<\kappa}/\sim_\delta| \leq \kappa = \kappa^{\kappa}$, so we may identify $\bigcup_{\delta \in S} \delta^{<\kappa}/\sim_\delta$ with κ.

Define a continuous map $f : \kappa^{\kappa} \rightarrow \kappa^{\kappa}$ by letting $f(\xi)(\delta) = [\xi \upharpoonright \delta]_{\sim_\delta}$.

If $\xi \not=_{X \kappa} \eta$, then, by Clause (1), $f(\xi) \not=_{S \kappa} f(\eta)$.

\Box
Filter reflection

Filter reflection (aka, Fake reflection)

We say that $X \overset{\mathcal{F}}{\rightarrow}$-reflects to S iff the two hold:

1. For every stat. $Y \subseteq X$, there are stat. many $\delta \in S$ s.t. $Y \cap \delta \in \mathcal{F}_\delta^+$;
2. For every club $C \subseteq \kappa$, there are club many $\delta \in S$ s.t. $C \cap \delta \in \mathcal{F}_\delta$.

Consistency strength
Filter reflection

Filter reflection (aka, Fake reflection)

We say that X $\tilde{\mathcal{F}}$-reflects to S iff the two hold:

1. For every stat. $Y \subseteq X$, there are stat. many $\delta \in S$ s.t. $Y \cap \delta \in \mathcal{F}_{\delta}^+$;
2. For every club $C \subseteq \kappa$, there are club many $\delta \in S$ s.t. $C \cap \delta \in \mathcal{F}_{\delta}$.

Just force it

Unlike stationary reflection, fake reflection at the levels of successor cardinals $\kappa = \lambda^+$ may be forced without appealing to large cardinals! Furthermore, forcing over models of GCH preserves the cardinals structure.
Filter reflection

Filter reflection (aka, Fake reflection)

We say that $X \overset{\mathcal{F}}{\rightarrow}$-reflects to S iff the two hold:

1. For every stat. $Y \subseteq X$, there are stat. many $\delta \in S$ s.t. $Y \cap \delta \in \mathcal{F}_\delta^+$;
2. For every club $C \subseteq \kappa$, there are club many $\delta \in S$ s.t. $C \cap \delta \in \mathcal{F}_\delta$.

Just force it

Unlike stationary reflection, fake reflection at the levels of successor cardinals $\kappa = \lambda^+$ may be forced without appealing to large cardinals! Furthermore, forcing over models of GCH preserves the cardinals structure.

Let us take a closer look at this principle...
Filter reflection

Filter reflection (aka, Fake reflection)

We say that \(X \xrightarrow{\mathcal{F}} \)-reflects to \(S \) iff the two hold:

1. For every stat. \(Y \subseteq X \), there are stat. many \(\delta \in S \) s.t. \(Y \cap \delta \in \mathcal{F}_\delta^+ \);
2. For every club \(C \subseteq \kappa \), there are club many \(\delta \in S \) s.t. \(C \cap \delta \in \mathcal{F}_\delta \).

About Clause (1):

- Sequences \(\mathcal{F} \) satisfying just Clause (1) exist in ZFC, where each \(\mathcal{F}_\delta \) is principal.
Filter reflection

Filter reflection (aka, Fake reflection)

We say that $X \overset{F}{\rightarrow} \text{reflects to } S$ iff the two hold:

1. For every stat. $Y \subseteq X$, there are stat. many $\delta \in S$ s.t. $Y \cap \delta \in \mathcal{F}_\delta^+$;
2. For every club $C \subseteq \kappa$, there are club many $\delta \in S$ s.t. $C \cap \delta \in \mathcal{F}_\delta$.

About Clause (1):
- Sequences \vec{F} satisfying just Clause (1) exist in ZFC, where each \mathcal{F}_δ is principal.
- A consistent non-principal example is given by Moore’s work on trace reflection in models of MRP.
Filter reflection

Filter reflection (aka, Fake reflection)

We say that $X \overset{\mathcal{F}}{\text{reflects to}} S$ iff the two hold:

1. For every stat. $Y \subseteq X$, there are stat. many $\delta \in S$ s.t. $Y \cap \delta \in \mathcal{F}^+$;
2. For every club $C \subseteq \kappa$, there are club many $\delta \in S$ s.t. $C \cap \delta \in \mathcal{F}_\delta$.

About Clause (2):

- Sequences \mathcal{F} satisfying just Clause (2) exist in ZFC, letting $\mathcal{F}_\delta := \text{CUB}(\delta)$.

Assaf Rinot (Bar-Ilan University) Analytic quasi-orders and two diamonds May, 2019 14 / 18
Filter reflection

Filter reflection (aka, Fake reflection)

We say that $X \overset{\mathcal{F}}{\longrightarrow} S$ iff the two hold:

1. For every stat. $Y \subseteq X$, there are stat. many $\delta \in S$ s.t. $Y \cap \delta \in \mathcal{F}\mathcal{U}^+$;
2. For every club $C \subseteq \kappa$, there are club many $\delta \in S$ s.t. $C \cap \delta \in \mathcal{F}\mathcal{U}$.

About Clause (2):

- Sequences $\overset{\mathcal{F}}{\longrightarrow}$ satisfying just Clause (2) exist in ZFC, letting $\mathcal{F}\mathcal{U}_\delta := \text{CUB}(\delta)$.
- If S is ineffable and Clause (2) holds, then $\mathcal{F}\mathcal{U}_\delta \supseteq \text{CUB}(\delta)$.
Filter reflection

Filter reflection (aka, Fake reflection)

We say that $X \overset{\mathcal{F}}{\longrightarrow} S$ iff the two hold:

1. For every stat. $Y \subseteq X$, there are stat. many $\delta \in S$ s.t. $Y \cap \delta \in \mathcal{F}_\delta^+$;
2. For every club $C \subseteq \kappa$, there are club many $\delta \in S$ s.t. $C \cap \delta \in \mathcal{F}_\delta$.

About Clause (2):

- Sequences \mathcal{F} satisfying just Clause (2) exist in ZFC, letting $\mathcal{F}_\delta := \text{CUB}(\delta)$.
- If S is ineffable and Clause (2) holds, then $\mathcal{F}_\delta \supseteq \text{CUB}(\delta)$.
- If each \mathcal{F}_δ has a small base, then Clause (2) is a strong club guessing principle.
Filter reflection

Filter reflection (aka, Fake reflection)

We say that X \tilde{F}-reflects to S iff the two hold:

1. For every stat. $Y \subseteq X$, there are stat. many $\delta \in S$ s.t. $Y \cap \delta \in \mathcal{F}_\delta^+$;
2. For every club $C \subseteq \kappa$, there are club many $\delta \in S$ s.t. $C \cap \delta \in \mathcal{F}_\delta$.

About Clause (2):

- Sequences \tilde{F} satisfying just Clause (2) exist in ZFC, letting $\mathcal{F}_\delta := \text{CUB}(\delta)$.
- If S is ineffable and Clause (2) holds, then $\mathcal{F}_\delta \supseteq \text{CUB}(\delta)$.
- If each \mathcal{F}_δ has a small base, then Clause (2) is a strong club guessing principle. Such a sequence is easily derivable from \Diamond^*_S.

Assaf Rinot (Bar-Ilan University)
Filter reflection

Filter reflection with diamond

We say that $X \stackrel{\mathcal{F}}{\rightsquigarrow}$-reflects to S with \Diamond iff there is $\langle Y_\delta \mid \delta \in S \rangle$ such that:

1. For every stat. $Y \subseteq X$, there are stat. many $\delta \in S$, $Y_\delta = Y \cap \delta \in \mathcal{F}_\delta^+$;
2. For every club $C \subseteq \kappa$, there are club many $\delta \in S$ s.t. $C \cap \delta \in \mathcal{F}_\delta$.
Filter reflection

Filter reflection with diamond

We say that $X \vec{F}$-reflects to S with ♦ iff there is $\langle Y_\delta \mid \delta \in S \rangle$ such that:

1. For every stat. $Y \subseteq X$, there are stat. many $\delta \in S$, $Y_\delta = Y \cap \delta \in F^+_\delta$;
2. For every club $C \subseteq \kappa$, there are club many $\delta \in S$ s.t. $C \cap \delta \in F_\delta$.

Proposition

If $X \vec{F}$-reflects to S with ♦, then $=_X \leftrightarrow_c =^2_S$.

Assaf Rinot (Bar-Ilan University) Analytic quasi-orders and two diamonds May, 2019 14 / 18
Filter reflection

Filter reflection with diamond

We say that \(X \overset{\mathcal{F}}{\rightarrow} \) reflects to \(S \) with \(\diamond \) iff there is \(\langle Y_\delta \mid \delta \in S \rangle \) such that:

1. For every stat. \(Y \subseteq X \), there are stat. many \(\delta \in S \), \(Y_\delta = Y \cap \delta \in \mathcal{F}_\delta^+ \);
2. For every club \(C \subseteq \kappa \), there are club many \(\delta \in S \) s.t. \(C \cap \delta \in \mathcal{F}_\delta \).

Proposition

If \(X \overset{\mathcal{F}}{\rightarrow} \) reflects to \(S \) with \(\diamond \), then \(\equiv_X \rightarrow_c \equiv_S^2 \).

Fake it till you make it

Fake reflection makes sense even for \(S \) that concentrates on points of countable cofinality, so we consistently get a complete cycle of reductions:

\[
\equiv_{S_1^2} \rightarrow_c \equiv_{S_0^2} \rightarrow c \equiv_{S_0^2} \rightarrow c \equiv_{S_1^2} \rightarrow c \equiv_{S_1^2}.
\]
Authentic reflection with diamond

The special case \mathcal{X} CUB-reflects to \mathcal{S} with ♦ appears in the work of [Friedman-Hyttinen-Kulikov, 2014] under the name \mathcal{X} ♦-reflects to \mathcal{S}.
Authentic reflection with diamond

The special case $X \text{ CUB-reflects to } S$ with \diamond appears in the work of [Friedman-Hyttinen-Kulikov, 2014] under the name $X \diamond$-reflects to S. They proved it implies $=^2_X \hookrightarrow_c =^2_S$, but we now know that it furthermore implies $=X \hookrightarrow_c =^2_S$.
Authentic reflection with diamond

The special case $X \text{ CUB-reflects to } S$ with \diamondsuit appears in the work of [Friedman-Hyttinen-Kulikov, 2014] under the name $X \diamondsuit$-reflects to S. They proved it implies $=^2_X \hookrightarrow_c =^2_S$, but we now know that it furthermore implies $=_X \hookrightarrow_c =^2_S$.

Theorem (Sun, 1993)

If κ is ineffable, then \diamondsuit^1_κ holds. I.e., there is a sequence $\langle Y_\delta \mid \delta < \kappa \rangle$ s.t., for every $Y \subseteq \kappa$, $\{ \delta < \kappa \mid Y_\delta = Y \cap \delta \}$ is a Π^1_1-indescribable set.
Authentic reflection with diamond

The special case $X \text{ CUB-reflects to } S$ with \Diamond appears in the work of [Friedman-Hyttinen-Kulikov, 2014] under the name $X \Diamond$-reflects to S. They proved it implies $=^2_X \mapsto_c =^2_S$, but we now know that it furthermore implies $=^1_X \mapsto_c =^2_S$.

Theorem (Sun, 1993)

If κ is ineffable, then \Diamond^{1}_{κ} holds. i.e., there is a sequence $\langle Y_\delta \mid \delta < \kappa \rangle$ s.t., for every $Y \subseteq \kappa$, $\{ \delta < \kappa \mid Y_\delta = Y \cap \delta \}$ is a Π^1_1-indescribable set. In particular, $\kappa \Diamond$-reflects to κ.
Authentic reflection with diamond

The special case X CUB-reflects to S with \diamondsuit appears in the work of [Friedman-Hyttinen-Kulikov, 2014] under the name $X \diamondsuit$-reflects to S. They proved it implies $=^2_X \hookrightarrow c =^2_S$, but we now know that it furthermore implies $=_X \hookrightarrow c =^2_S$.

Theorem (Sun, 1993)

*If S is ineffable, then \diamondsuit^1_S holds. In particular, $\kappa \diamondsuit$-reflects to S.***
Authentic reflection with diamond

The special case \(X \text{ CUB-reflects to } S \) with \(\diamond \) appears in the work of [Friedman-Hyttinen-Kulikov, 2014] under the name \(X \diamond \)-reflects to \(S \). They proved it implies \(\mathcal{E}_X \leftrightarrow c = \mathcal{E}_S \), but we now know that it furthermore implies \(\mathcal{E}_X \leftrightarrow c = \mathcal{E}_S \).

Theorem (Sun, 1993)

If \(S \) is ineffable, then \(\diamond^1_S \) holds. In particular, \(\kappa \diamond \)-reflects to \(S \).

Theorem

1. If \(S \) is weakly compact and \(\diamond^*_S \) holds, then so does \(\diamond^1_S \).
Authentic reflection with diamond

The special case X CUB-reflects to S with \Diamond appears in the work of [Friedman-Hyttinen-Kulikov, 2014] under the name $X \Diamond$-reflects to S. They proved it implies $\models^X_c =_S^2$, but we now know that it furthermore implies $\models X \leftrightarrow c = S^2$.

Theorem (Sun, 1993)

*If S is ineffable, then \Diamond^1_S holds. In particular, $\kappa \Diamond$-reflects to S.***

Theorem

1. *If S is weakly compact and \Diamond^*_S holds, then so does \Diamond^1_S.***

2. *If κ is weakly compact, $\lambda \in \text{Reg}(\kappa)$ and GCH holds, then after forcing with $\text{Col}(\lambda, <\kappa)$, $\lambda^+ \cap \text{cof}(<\lambda) \Diamond$-reflects to $\lambda^+ \cap \text{cof}(\lambda)$.***
Authentic reflection with diamond

The special case X CUB-reflects to S with \diamond appears in the work of [Friedman-Hyttinen-Kulikov, 2014] under the name X \diamond-reflects to S. They proved it implies $=_X \leftrightarrow c =_S^2$, but we now know that it furthermore implies $=X \leftrightarrow c =_S^2$.

Theorem (Sun, 1993)

If S is ineffable, then \diamond_1^S holds. In particular, κ \diamond-reflects to S.

Theorem

1. If S is weakly compact and \diamond^*_S holds, then so does $\diamond_{\frac{1}{2}}^S$.
2. If κ is weakly compact, $\lambda \in \text{Reg}(\kappa)$ and GCH holds, then after forcing with $\text{Col}(\lambda, <\kappa)$, $\lambda^+ \cap \text{cof}(<\lambda)$ \diamond-reflects to $\lambda^+ \cap \text{cof}(\lambda)$.
3. Assuming MM (Martin's Maximum), if $\diamond_{\kappa \cap \text{cof}(\omega)}$ holds, then $\kappa \cap \text{cof}(\omega)$ \diamond-reflects to $\kappa \cap \text{cof}(\omega_1)$.
Authentic reflection with diamond

The special case $X \text{ CUB-reflects to } S$ with \Box appears in the work of [Friedman-Hyttinen-Kulikov, 2014] under the name $X \llbracket \Box \rrbracket$-reflects to S. They proved it implies $=^{2}_X \rightarrow c =^{2}_S$, but we now know that it furthermore implies $=X \rightarrow c =^{2}_S$.

Theorem (Sun, 1993)

If S is ineffable, then $\llbracket \Box \rrbracket^{1}_S$ holds. In particular, $\kappa \llbracket \Box \rrbracket$-reflects to S.

Theorem

1. If S is weakly compact and $\llbracket \Box \rrbracket^{*}_S$ holds, then so does $\llbracket \Box \rrbracket^{1}_S$.
2. If κ is weakly compact, $\lambda \in \text{Reg}(\kappa)$ and GCH holds, then after forcing with $\text{Col}(\lambda, < \kappa)$, $\lambda^+ \cap \text{cof}(\lambda^+) \llbracket \Box \rrbracket$-reflects to $\lambda^+ \cap \text{cof}(\lambda)$.
3. Assuming MM (Martin’s Maximum), if $\llbracket \Box \rrbracket^{\kappa \cap \text{cof}(\omega)}$ holds, then $\kappa \cap \text{cof}(\omega) \llbracket \Box \rrbracket$-reflects to $\kappa \cap \text{cof}(\omega_1)$.
4. Whenever $\text{Add}(\kappa, 1)$ forces that every stationary subset of X reflects in S, it moreover forces that $X \llbracket \Box \rrbracket$-reflects to S.
The non-ineffable case

Definition (Devlin, 1982)

\[\diamondsuit_S \text{ asserts the existence of a sequence } \langle N_\delta \mid \delta \in S \rangle \text{ satisfying } (1)-(3):\]

1. each \(N_\delta \) is a p.r.-closed transitive set of size \(|\delta| + \aleph_0 \) & \(\delta + 1 \subseteq N_\delta; \)
The non-ineffable case

Definition (Devlin, 1982)

\(\diamondsuit_S\) asserts the existence of a sequence \(\langle N_\delta \mid \delta \in S \rangle\) satisfying (1)–(3):

1. each \(N_\delta\) is a p.r.-closed transitive set of size \(|\delta| + \aleph_0 \& \delta + 1 \subseteq N_\delta\);
2. for every \(Y \subseteq \kappa\), there is a club \(D \subseteq \kappa\) such that, for all \(\delta \in D \cap S\), \(Y \cap \delta, D \cap \delta \in N_\delta\).
The non-ineffable case

Definition (Devlin, 1982)

\[\diamondsuit_S\] asserts the existence of a sequence \(\langle N_\delta \mid \delta \in S \rangle\) satisfying (1)–(3):

1. Each \(N_\delta\) is a p.r.-closed transitive set of size \(|\delta| + \aleph_0\) & \(\delta + 1 \subseteq N_\delta\);
2. For every \(Y \subseteq \kappa\), there is a club \(D \subseteq \kappa\) such that, for all \(\delta \in D \cap S\), \(Y \cap \delta, D \cap \delta \in N_\delta\);
3. Whenever \(\langle \kappa, \in, (A_n)_{n \in \omega} \rangle \models_{H_(\kappa^+)} \phi\), with \(\phi\) a \(\Pi^1_2\)-sentence, there are stationarily many \(\delta \in S\) such that \(\langle \delta, \in, (A_n \upharpoonright \delta)_{n \in \omega} \rangle \models_{N_\delta} \phi\).
The non-ineffable case

Definition (Devlin, 1982)

\[\diamondsuit_S^\# \] asserts the existence of a sequence \(\langle N_\delta \mid \delta \in S \rangle \) satisfying (1)–(3):

1. each \(N_\delta \) is a p.r.-closed transitive set of size \(|\delta| + \aleph_0 \) & \(\delta + 1 \subseteq N_\delta \);
2. for every \(Y \subseteq \kappa \), there is a club \(D \subseteq \kappa \) such that, for all \(\delta \in D \cap S \), \(Y \cap \delta, D \cap \delta \in N_\delta \);
3. whenever \(\langle \kappa, \in, (A_n)_{n \in \omega} \rangle \models_{H(\kappa^+)} \phi \), with \(\phi \) a \(\Pi^1_2 \)-sentence, there are stationarily many \(\delta \in S \) such that \(\langle \delta, \in, (A_n \upharpoonright \delta)_{n \in \omega} \rangle \models_{N_\delta} \phi \).

Note: Clauses (1) and (2) amount to \(\diamondsuit_S^+ \). Unlike \(\diamondsuit_S^+ \), for every \(\tilde{N} \) witnessing \(\diamondsuit_S^\# \), there is a stationary \(T \subseteq S \) such that \(\tilde{N} \upharpoonright T \) fails to witness \(\diamondsuit_T^\# \).
The non-ineffable case

Definition (Devlin, 1982)

\(\Diamond^\#_S \) asserts the existence of a sequence \(\langle N_\delta \mid \delta \in S \rangle \) satisfying (1)–(3):

1. each \(N_\delta \) is a p.r.-closed transitive set of size \(|\delta| + \aleph_0 \& \delta + 1 \subseteq N_\delta\);
2. for every \(Y \subseteq \kappa \), there is a club \(D \subseteq \kappa \) such that, for all \(\delta \in D \cap S \), \(Y \cap \delta, D \cap \delta \in N_\delta \);
3. whenever \(\langle \kappa, \in, (A_n)_{n \in \omega} \rangle \models_{H(\kappa^+)} \phi \), with \(\phi \) a \(\Pi^1_2 \)-sentence, there are stationarily many \(\delta \in S \) such that \(\langle \delta, \in, (A_n \upharpoonright \delta)_{n \in \omega} \rangle \models_{N_\delta} \phi \).

Theorem (Devlin, 1982)

If \(V = L \), then for every regular uncountable cardinal \(\kappa \), \(\Diamond^\#_\kappa \) holds iff \(\kappa \) is not ineffable.
The non-ineffable case

Definition (Devlin, 1982)

\[\sh^S \] asserts the existence of a sequence \(\langle N_\delta \mid \delta \in S \rangle \) satisfying (1)–(3):

1. each \(N_\delta \) is a p.r.-closed transitive set of size \(|\delta| + \aleph_0 \) & \(\delta + 1 \subseteq N_\delta \);
2. for every \(Y \subseteq \kappa \), there is a club \(D \subseteq \kappa \) such that, for all \(\delta \in D \cap S \), \(Y \cap \delta, D \cap \delta \in N_\delta \);
3. whenever \(\langle \kappa, \in, (A_n)_{n \in \omega} \rangle \models H(\kappa^+) \phi \), with \(\phi \) a \(\Pi^1_2 \)-sentence, there are stationarily many \(\delta \in S \) such that \(\langle \delta, \in, (A_n \upharpoonright \delta)_{n \in \omega} \rangle \models N_\delta \phi \).

Theorem (Devlin, 1982)

If \(V = L \), then for every regular uncountable cardinal \(\kappa \), \(\sh^\kappa \) holds iff \(\kappa \) is not ineffable. In fact, for every stationary subset \(S \) of a regular uncountable cardinal, \(\sh^S \) holds iff \(S \) is not ineffable.
The non-ineffable case

Definition (Devlin, 1982)

\[\clubsuit^#_S \] asserts the existence of a sequence \(\langle N_\delta \mid \delta \in S \rangle \) satisfying (1)–(3):

1. each \(N_\delta \) is a p.r.-closed transitive set of size \(|\delta| + \aleph_0 \) & \(\delta + 1 \subseteq N_\delta \);
2. for every \(Y \subseteq \kappa \), there is a club \(D \subseteq \kappa \) such that, for all \(\delta \in D \cap S \), \(Y \cap \delta, D \cap \delta \in N_\delta \);
3. whenever \(\langle \kappa, \in, (A_n)_{n \in \omega} \rangle \models_{H(\kappa^+)} \phi \), with \(\phi \) a \(\Pi^1_2 \)-sentence, there are stationarily many \(\delta \in S \) such that \(\langle \delta, \in, (A_n \upharpoonright \delta)_{n \in \omega} \rangle \models N_\delta \phi \).

Proposition

If \(\clubsuit^#_S \) holds, then, \(\kappa \) \(\vec{\mathcal{F}} \)-reflects to \(S \) with \(\diamond \) (for some choice of \(\vec{\mathcal{F}} \)).
The non-ineffable case

Definition (Devlin, 1982)

\[S \]

\[S \] asserts the existence of a sequence \(\langle N_\delta \mid \delta \in S \rangle \) satisfying (1)–(3):

1. each \(N_\delta \) is a p.r.-closed transitive set of size \(|\delta| + \aleph_0 \) & \(\delta + 1 \subseteq N_\delta \);
2. for every \(Y \subseteq \kappa \), there is a club \(D \subseteq \kappa \) such that, for all \(\delta \in D \cap S \), \(Y \cap \delta, D \cap \delta \in N_\delta \);
3. whenever \(\langle \kappa, \in, (A_n)_{n \in \omega} \rangle \models_{H(\kappa^+)} \phi \), with \(\phi \) a \(\Pi^1_2 \)-sentence, there are stationarily many \(\delta \in S \) such that \(\langle \delta, \in, (A_n \upharpoonright \delta)_{n \in \omega} \rangle \models N_\delta \phi \).

Proposition

If \(\#_S \) holds, then, \(\kappa \vec{F} \)-reflects to \(S \) with \(\Diamond \) (for some choice of \(\vec{F} \)).

Recalling Sun's theorem about ineffable sets, we infer:

In \(L \), for every regular uncountable cardinal \(\kappa \), and every stationary \(S \subseteq \kappa \), there is a sequence of filters \(\vec{F}_S \) for which \(\kappa \vec{F}_S \)-reflects to \(S \) with \(\Diamond \).
The non-ineffable case

Definition (Devlin, 1982)

\[\diamondsuit_S\] asserts the existence of a sequence \(\langle N_\delta \mid \delta \in S \rangle\) satisfying (1)–(3):

1. each \(N_\delta\) is a p.r.-closed transitive set of size \(|\delta| + \aleph_0 \& \delta + 1 \subseteq N_\delta\);
2. for every \(Y \subseteq \kappa\), there is a club \(D \subseteq \kappa\) such that, for all \(\delta \in D \cap S\), \(Y \cap \delta, D \cap \delta \in N_\delta\);
3. whenever \(\langle \kappa, \in, (A_n)_{n \in \omega} \rangle \models_{H(\kappa^+)} \phi\), with \(\phi\) a \(\Pi^1_2\)-sentence, there are stationarily many \(\delta \in S\) such that \(\langle \delta, \in, (A_n \upharpoonright \delta)_{n \in \omega} \rangle \models N_\delta \phi\).

Corollary

In \(L\), for all two stationary \(S, S' \subseteq \kappa\), \(=S \leftrightarrow_c =_{2S'}\).

Recalling Sun’s theorem about ineffable sets, we infer:

In \(L\), for every regular uncountable cardinal \(\kappa\), and every stationary \(S \subseteq \kappa\), there is a sequence of filters \(\vec{F}_S\) for which \(\kappa\ \vec{F}_S\)-reflects to \(S\) with \(\diamondsuit\).
◊ # is a GDST’s best friend

It takes more work, yet, all of the above generalize to arbitrary Σ^1_1-equivalence relations (projections of closed sets in $(\kappa^{<\kappa})^3$ or $(2^{<\kappa})^3$), and to Σ^1_1-quasi-orders (reflexive+transitive).
is a GDST’s best friend

It takes more work, yet, all of the above generalize to arbitrary \(\Sigma_1 \)-equivalence relations (projections of closed sets in \((\kappa^\kappa)^3 \) or \((2^\kappa)^3 \)), and to \(\Sigma_1 \)-quasi-orders (reflexive+transitive).

Natural quasi-orders on \(\kappa^\kappa \) and \(2^\kappa \)

- For \(\eta, \xi \in \kappa^\kappa \), let \(\eta \leq_s \xi \) iff \(\{ \alpha \in S \mid \eta(\alpha) > \xi(\alpha) \} \) is nonstationary.
◊# is a GDST’s best friend

It takes more work, yet, all of the above generalize to arbitrary \(\Sigma_1 \)-equivalence relations (projections of closed sets in \((\kappa^\kappa)^3\) or \((2^\kappa)^3\)), and to \(\Sigma_1 \)-quasi-orders (reflexive + transitive).

Natural quasi-orders on \(\kappa^\kappa \) and \(2^\kappa \)

- For \(\eta, \xi \in \kappa^\kappa \), let \(\eta \leq_S \xi \) iff \(\{ \alpha \in S \mid \eta(\alpha) > \xi(\alpha) \} \) is nonstationary.
- For \(\eta, \xi \in 2^\kappa \), let \(\eta \subseteq_S \xi \) iff \(\{ \alpha \in S \mid \eta(\alpha) > \xi(\alpha) \} \) is nonstationary.
◊ ♦ is a GDST’s best friend

It takes more work, yet, all of the above generalize to arbitrary \(\Sigma_1^- \)-equivalence relations (projections of closed sets in \((\kappa^\kappa)^3\) or \((2^\kappa)^3\)), and to \(\Sigma_1^- \)-quasi-orders (reflexive+transitive).

Natural quasi-orders on \(\kappa^\kappa \) and \(2^\kappa \)

- For \(\eta, \xi \in \kappa^\kappa \), let \(\eta \leq_S \xi \) iff \(\{ \alpha \in S \mid \eta(\alpha) > \xi(\alpha) \} \) is nonstationary.
- For \(\eta, \xi \in 2^\kappa \), let \(\eta \subseteq_S \xi \) iff \(\{ \alpha \in S \mid \eta(\alpha) > \xi(\alpha) \} \) is nonstationary.

Theorem

◊ ♦ \(S \) implies that \(Q \hookrightarrow_c \subseteq_S \) for every \(\Sigma_1^- \)-quasi-order \(Q \) on \(\kappa^\kappa \).

In particular, ◊ ♦ \(S \) implies that \(=_{2^S} \) is a \(\Sigma_1^- \)-complete equivalence relation.

\[\text{\# is a GDST's best friend} \]

It takes more work, yet, all of the above generalize to arbitrary \(\Sigma^1_1 \)-equivalence relations (projections of closed sets in \((\kappa^\kappa)^3\) or \((2^\kappa)^3\)), and to \(\Sigma^1_1 \)-quasi-orders (reflexive + transitive).

Natural quasi-orders on \(\kappa^\kappa \) and \(2^\kappa \)

- For \(\eta, \xi \in \kappa^\kappa \), let \(\eta \leq_S \xi \) iff \(\{ \alpha \in S \mid \eta(\alpha) > \xi(\alpha) \} \) is nonstationary.
- For \(\eta, \xi \in 2^\kappa \), let \(\eta \subseteq_S \xi \) iff \(\{ \alpha \in S \mid \eta(\alpha) > \xi(\alpha) \} \) is nonstationary.

Theorem

\[\text{\#}_S \text{ implies that } Q \hookrightarrow_c \subseteq_S \text{ for every } \Sigma^1_1 \text{-quasi-order } Q \text{ on } \kappa^\kappa. \]

In particular, \(\text{\#}_S \) implies that \(=_{2^S} \) is a \(\Sigma^1_1 \)-complete equivalence relation.

By [Friedman-Wu-Zdomskyy, 2015], it is consistent with GCH that for a successor cardinal \(\kappa \), for all stationary \(S \subseteq \kappa \), \(=_{2^S} \) is \(\Delta^1_1 \).
is a GDST’s best friend

It takes more work, yet, all of the above generalize to arbitrary \(\Sigma^1_1 \)-equivalence relations (projections of closed sets in \((\kappa^\kappa)^3 \) or \((2^\kappa)^3 \)), and to \(\Sigma^1_1 \)-quasi-orders (reflexive + transitive).

Natural quasi-orders on \(\kappa^\kappa \) and \(2^\kappa \)

- For \(\eta, \xi \in \kappa^\kappa \), let \(\eta \leq_S \xi \) iff \(\{ \alpha \in S \mid \eta(\alpha) > \xi(\alpha) \} \) is nonstationary.
- For \(\eta, \xi \in 2^\kappa \), let \(\eta \subseteq_S \xi \) iff \(\{ \alpha \in S \mid \eta(\alpha) > \xi(\alpha) \} \) is nonstationary.

Theorem

\(\diamondsuit_S \) implies that \(Q \hookrightarrow c \subseteq_S \) for every \(\Sigma^1_1 \)-quasi-order \(Q \) on \(\kappa^\kappa \).

In particular, \(\diamondsuit_S \) implies that \(\equiv^2_S \) is a \(\Sigma^1_1 \)-complete equivalence relation, while \(\diamondsuit^+_S \) does not.

By [Friedman-Wu-Zdomskyy, 2015], it is consistent with GCH that for a successor cardinal \(\kappa \), for all stationary \(S \subseteq \kappa \), \(\equiv^2_S \) is \(\Delta^1_1 \).
Comparing theories, revisited

Devlin’s \diamondsuit_S may become an essential tool for the model theorist...

Theorem

Let T be a complete first-order countable relational theory. In any of the following cases, \equiv_T is Σ^1_1-complete:

- $\kappa = \lambda^+$, $\lambda^\kappa = \lambda$, $\diamondsuit_{\kappa \cap \text{cof}(\lambda)}$ holds and T is unstable;
- κ is inaccessible, $\diamondsuit_{\kappa \cap \text{cof}(2^{\aleph_0}^+)}$ and T is superstable with S-DOP;
- κ is \aleph_0-inaccessible, $\diamondsuit_{\kappa \cap \text{cof}(\aleph_0)}$ holds, and T is stable unsuperstable.