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The strongest coloring

At the end of yesterday’s lecture, Peter Nyikos asked me to clarify as to
what do I mean by a “strong coloring”.
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demonstrates all conceivable features at once.
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The strongest coloring

At the end of yesterday’s lecture, Peter Nyikos asked me to clarify as to
what do I mean by a “strong coloring”. Let me give you an object that
demonstrates all conceivable features at once.

Fix an arbitrary almost disjoint family {xβ | β < ω1} ⊆ [ω]ω.
For each β < ω1, fix an injection tβ : β → xβ.
Derive a coloring c : [ω1]2 → ω by letting for all α < β < ω1:

c(α, β) := tβ(α).
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The strongest coloring

At the end of yesterday’s lecture, Peter Nyikos asked me to clarify as to
what do I mean by a “strong coloring”. Let me give you an object that
demonstrates all conceivable features at once.

Fix an arbitrary almost disjoint family {xβ | β < ω1} ⊆ [ω]ω.
For each β < ω1, fix an injection tβ : β → xβ.
Derive a coloring c : [ω1]2 → ω by letting for all α < β < ω1:

c(α, β) := tβ(α).

Proposition

For every n < ω, and every uncountable subfamily A ⊆ [ω1]<ω of pairwise
disjoint sets, there exist a, b ∈ A such that:

max(a) < min(b);

c[a× b] has size |a× b|;
c[a× b] is disjoint from n.
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The strongest coloring

Now, force to add a Cohen real r : ω → ω.
Every unctble family in V [r ] contains an unctble subfamily in V , so that
every condition p : n→ ω forces that d := r ◦ c is the wildest coloring.
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For every n < ω, and every uncountable subfamily A ⊆ [ω1]<ω of pairwise
disjoint sets, there exist a, b ∈ A such that:
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The strongest coloring

Now, force to add a Cohen real r : ω → ω.
Every unctble family in V [r ] contains an unctble subfamily in V , so that
every condition p : n→ ω forces that d := r ◦ c is the wildest coloring.

For each β < ω1, define fβ : ω1 → 2 by stipulating:

fβ(α) :=


1, if α < β and d(α, β) = 1;

1, if α = β;

0, otherwise.
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The strongest coloring

Now, force to add a Cohen real r : ω → ω.
Every unctble family in V [r ] contains an unctble subfamily in V , so that
every condition p : n→ ω forces that d := r ◦ c is the wildest coloring.

For each β < ω1, define fβ : ω1 → 2 by stipulating:

fβ(α) :=


1, if α < β and d(α, β) = 1;

1, if α = β;

0, otherwise.

This is an L space

{fβ | β < ω1} is a regular, Hausdorff subspace of 2ω1 which is hereditarily
Lindelöf but not hereditarily separable.
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The strongest coloring

Now, force to add a Cohen real r : ω → ω.
Every unctble family in V [r ] contains an unctble subfamily in V , so that
every condition p : n→ ω forces that d := r ◦ c is the wildest coloring.

For each β < ω1, define fβ : ω1 → 2 by stipulating:

fβ(α) :=


1, if α < β and d(α, β) = 1;

1, if α = β;

0, otherwise.

Adding a Cohen real adds a strong L space (Roitman, 1979)

{fβ | β < ω1} is a regular, Hausdorff subspace of 2ω1 which is hereditarily
Lindelöf in all finite powers but not separable.

By Kunen (1977), MAℵ1 entails that there are no strong L spaces.
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The strongest coloring

Now, force to add a Cohen real r : ω → ω.
Every unctble family in V [r ] contains an unctble subfamily in V , so that
every condition p : n→ ω forces that d := r ◦ c is the wildest coloring.

Let f ∗β (α) := fα(β). That is, define f ∗β : ω1 → 2 by stipulating:

f ∗β (α) :=


1, if α > β and d(β, α) = 1;

1, if α = β;

0, otherwise.
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The strongest coloring

Now, force to add a Cohen real r : ω → ω.
Every unctble family in V [r ] contains an unctble subfamily in V , so that
every condition p : n→ ω forces that d := r ◦ c is the wildest coloring.

Let f ∗β (α) := fα(β). That is, define f ∗β : ω1 → 2 by stipulating:

f ∗β (α) :=


1, if α > β and d(β, α) = 1;

1, if α = β;

0, otherwise.

This is a strong S space

{f ∗β | β < ω1} is a regular, Hausdorff subspace of 2ω1 which is hereditarily
separable in all finite powers but not Lindelöf.

By Zenor (1980), there is a strong S space iff there is a strong L space.
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Stretching exercises
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Getting more colors

Definition

A subset T ⊆ N is said to be thick if for every positive integer m, there
exists a positive integer k such that {k + 1, . . . , k + m} ⊆ T .

Proposition 1

Suppose c : [κ]2 → N satisfies that for every cofinal B ⊆ κ, c“[B]2 is
thick. Then κ9 [κ]2ℵ0

holds.

Proof.

Let {pi | i < ω} be the increasing enumeration of all prime numbers.
Define ψ : N→ N by stipulating that ψ(n) be the least i < ω such that pi
does not divide n.
By the Chinese remainder theorem, for each i < ω, any interval I ⊆ N of
length greater than p1 · · · pi satisfies i ∈ ψ“I .
So ψ ◦ c witnesses κ9 [κ]2ℵ0

.
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Definition

A subset T ⊆ N is said to be thick if for every positive integer m, there
exists a positive integer k such that {k + 1, . . . , k + m} ⊆ T .
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Suppose c : [κ]2 → N satisfies that for every cofinal B ⊆ κ, c“[B]2 is
thick. Then κ9 [κ]2ℵ0

holds.

Proof.

Let {pi | i < ω} be the increasing enumeration of all prime numbers.
Define ψ : N→ N by stipulating that ψ(n) be the least i < ω such that pi
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Getting more colors

Proposition 2

Suppose c : [κ]2 → R satisfies that for every cofinal B ⊆ κ, c“[B]2 is
dense. Then κ9 [κ]2ℵ0

holds.

Proposition 1

Suppose c : [κ]2 → N satisfies that for every cofinal B ⊆ κ, c“[B]2 is
thick. Then κ9 [κ]2ℵ0

holds.

Proof.

Let {pi | i < ω} be the increasing enumeration of all prime numbers.
Define ψ : N→ N by stipulating that ψ(n) be the least i < ω such that pi
does not divide n.
By the Chinese remainder theorem, for each i < ω, any interval I ⊆ N of
length greater than p1 · · · pi satisfies i ∈ ψ“I .
So ψ ◦ c witnesses κ9 [κ]2ℵ0

.
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Getting more colors (cont.)

Proposition 3

Suppose κ is a regular uncountable and c : [κ]2 → κ satisfies that for
every cofinal B ⊆ κ, c“[B]2 covers a club.
Then κ9 [κ]2κ holds.

Proof.

Fix a partition of κ into pairwise disjoint stationary sets, 〈Sγ | γ < κ〉.
Define ψ : κ→ κ by stipulating that ψ(δ) = γ iff δ ∈ Sγ .
For every club D ⊆ κ, we have D ∩ Sγ 6= ∅ for all γ < κ, so that ψ“D = κ.
Consequently, d := ψ ◦ c witnesses κ9 [κ]2κ.

Assaf Rinot (Bar-Ilan University) Strong colorings and their applications July, 2017 5 / 19



Getting more colors (cont.)

Proposition 3

Suppose κ is a regular uncountable and c : [κ]2 → κ satisfies that for
every cofinal B ⊆ κ, c“[B]2 covers a club.
Then κ9 [κ]2κ holds.

Proof.

Fix a partition of κ into pairwise disjoint stationary sets, 〈Sγ | γ < κ〉.

Define ψ : κ→ κ by stipulating that ψ(δ) = γ iff δ ∈ Sγ .
For every club D ⊆ κ, we have D ∩ Sγ 6= ∅ for all γ < κ, so that ψ“D = κ.
Consequently, d := ψ ◦ c witnesses κ9 [κ]2κ.

Assaf Rinot (Bar-Ilan University) Strong colorings and their applications July, 2017 5 / 19



Getting more colors (cont.)

Proposition 3

Suppose κ is a regular uncountable and c : [κ]2 → κ satisfies that for
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Getting more colors (cont.)

Proposition 3

Suppose κ is a regular uncountable and c : [κ]2 → κ satisfies that for
every cofinal B ⊆ κ, c“[B]2 covers a club.
Then κ9 [κ]2κ holds.

Proof.

Fix a partition of κ into pairwise disjoint stationary sets, 〈Sγ | γ < κ〉.
Define ψ : κ→ κ by stipulating that ψ(δ) = γ iff δ ∈ Sγ .
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Getting more colors (cont.)

Proposition 3

Suppose κ is a regular uncountable and c : [κ]2 → κ satisfies that for
every cofinal B ⊆ κ, c“[B]2 covers a club.
Then κ9 [κ]2κ holds.

Proof.

Fix a partition of κ into pairwise disjoint stationary sets, 〈Sγ | γ < κ〉.
Define ψ : κ→ κ by stipulating that ψ(δ) = γ iff δ ∈ Sγ .
For every club D ⊆ κ, we have D ∩ Sγ 6= ∅ for all γ < κ, so that ψ“D = κ.
Consequently, d := ψ ◦ c witnesses κ9 [κ]2κ.
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Getting more colors (cont.)

Proposition 3*

Suppose κ is regular uncountable, S ⊆ κ is stationary, and c : [κ]2 → κ
satisfies that for every cofinal B ⊆ κ, c“[B]2 covers a club relative to S .
Then κ9 [κ]2κ holds.

Proposition 3

Suppose κ is a regular uncountable and c : [κ]2 → κ satisfies that for
every cofinal B ⊆ κ, c“[B]2 covers a club.
Then κ9 [κ]2κ holds.

Proof.

Fix a partition of κ into pairwise disjoint stationary sets, 〈Sγ | γ < κ〉.
Define ψ : κ→ κ by stipulating that ψ(δ) = γ iff δ ∈ Sγ .
For every club D ⊆ κ, we have D ∩ Sγ 6= ∅ for all γ < κ, so that ψ“D = κ.
Consequently, d := ψ ◦ c witnesses κ9 [κ]2κ.
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2d stretching

Proposition 4

The following are equivalent:

1 λ+ 9 [λ+]2λ;

2 λ+ 9 [λ+]2λ+ .

Proof.

Fix c witnessing λ+ 9 [λ+]2λ.
For each β < λ+, fix a surjection ψβ : λ→ β.
Derive d : [λ+]2 → λ+ by letting for all α < β < λ+:

d(α, β) := ψβ(c(α, β)).

To see that d witnesses λ+ 9 [λ+]2λ+ , fix a cofinal B ⊆ λ+ and some
color γ < λ+. Wlog, min(B) > γ. By the Pigeonhole Principle, fix i < λ
and B ′ ∈ [B]λ

+
such that ψβ(i) = γ for each β ∈ B ′.

Let α < β both from B ′ be such that c(α, β) = i . Then d(α, β) = γ.
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3d stretching

Stretching functions could get more and more exotic.
In Moore (2006), an L space is derived from a coloring; this coloring is the
outcome of an unorthodox stretching — motivated by Kronecker’s
theorem on diophantine approximations — of some map osc : [ℵ1]2 → N.

In Peng-Wu (2015), an L group is derived from a stronger coloring.
They, as well, start with Moore’s map osc : [ℵ1]2 → N.
Then, they do the following:

1 For all x ∈ R, let f (x) denote the fractional part of x , that is,
f (x) := x − bxc.

2 For all x ∈ R \ {0}, let g(x) :=
sin( 1

x
)

x .

3 Find a suitable sequence of real numbers 〈rα | α < ℵ1〉.

Derive c : [ℵ1]2 → ℵ0 by letting for all α < β < ω1:

c(α, β) := bg(f (rα · osc(α, β) + rβ)c.
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Pumping up

The oldest open problem of this line of study reads as follows.

Problem 1

Does λ+ 9 [λ+]2λ+ hold for every singular cardinal λ?

Theorem (Shelah/Todorcevic, 1980’s)

Suppose λ is a singular cardinal, and κ9 [κ]2κ for a tail of regular κ < λ.
Then λ+ 9 [λ+]2λ+ .

Theorem (Eisworth, 2013)

Suppose λ is a singular cardinal, and λ+ 9 [λ+]2θ for all θ < λ.
Then λ+ 9 [λ+]2λ+ .
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It is not always possible to get more colors

Note

After adding weakly compact many Cohen reals:

1 2ℵ0 9 [2ℵ0 ]2ℵ0
holds;

2 2ℵ0 9 [2ℵ0 ]2ℵ1
fails.
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Note

After adding weakly compact many Cohen reals:

1 2ℵ0 9 [2ℵ0 ]2ℵ0
holds;

2 2ℵ0 9 [2ℵ0 ]2ℵ1
fails.

Conversely, by Rinot (2014), if the cardinal µ := cf(2ℵ0) is not weakly
compact in L, then 2ℵ0 9 [2ℵ0 ]2ℵ1

holds.
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It is not always possible to get more colors

Note

After adding weakly compact many Cohen reals:

1 2ℵ0 9 [2ℵ0 ]2ℵ0
holds;

2 2ℵ0 9 [2ℵ0 ]2ℵ1
fails.

The following is open:

Problem 2

Suppose κ is a regular uncountable cardinal. Are the following equivalent?

I κ9 [κ]22;

I κ9 [κ]2ℵ0
.
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To stretch or not to stretch, that is the question

Question

Is there any reason to prefer a coloring that natively produces a pallet of
colors over another coloring that produces the same, but through some
clever stretching?

Question

Is there any difference between a coloring derived from a Souslin tree or a
b-scale and a coloring derived from a special Aronszajn tree?

A possible answer

Suppose that c is some strong coloring in our universe V , and that V ′ is
some cofinality-preserving forcing extension. If c is derived from a Souslin
tree or a b-scale, then it is quite possible that in V ′, these objects have
lost their defining feature. In contrast, the special Aronszajn tree will
prevail, and so do the features of the colorings derived from it.
The same issue arise with regards to the stretching component.
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Inner partitioning into stationary sets

Definition (Woodin)

A regular uncountable cardinal κ is ω-strongly measurable in HOD if there
exists θ < κ such that:

1 (2θ)HOD < κ;

2 There is no partition 〈Sγ | γ < θ〉 of κ ∩ cof(ω) into stationary sets
such that 〈Sγ | γ < θ〉 ∈ HOD.

HOD Dichotomy theorem (Woodin, 2010)

Suppose that δ is an extendible cardinal. Then one of the following hold.

1 No regular cardinal κ ≥ δ is ω-strongly measurable in HOD.

2 Every regular cardinal κ ≥ δ is ω-strongly measurable in HOD.
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2 There is no partition 〈Sγ | γ < θ〉 of κ ∩ cof(ω) into stationary sets
such that 〈Sγ | γ < θ〉 ∈ HOD.

HOD Dichotomy theorem (Woodin, 2010)

Suppose that δ is an extendible cardinal. Then one of the following hold.

1 No regular cardinal κ ≥ δ is ω-strongly measurable in HOD.

2 Every regular cardinal κ ≥ δ is ω-strongly measurable in HOD.

Alternative 2 should be understood as an abstract generalization of “0]

exists”.
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Definition (Woodin)

A regular uncountable cardinal κ is ω-strongly measurable in HOD if there
exists θ < κ such that:

1 (2θ)HOD < κ;

2 There is no partition 〈Sγ | γ < θ〉 of κ ∩ cof(ω) into stationary sets
such that 〈Sγ | γ < θ〉 ∈ HOD.

HOD Dichotomy theorem (Woodin, 2010)

Suppose that δ is an extendible cardinal. Then one of the following hold.

1 No regular cardinal κ ≥ δ is ω-strongly measurable in HOD.

2 Every regular cardinal κ ≥ δ is ω-strongly measurable in HOD.

Inner partitioning into stationary sets also plays a role in the Friedman-
Magidor paper (2009) on the number of normal measures.
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Inner partitioning into stationary sets from a coloring

Observation

Suppose W ⊆ V is an inner model of ZFC, and c is some coloring in W .

In V , suppose that c witnesses κ9 [κ]2θ for some regular uncountable
cardinal κ, and some θ < κ. Then there is a partition 〈Sγ | γ < θ〉 of κ
into stationary sets, such that 〈Sγ | γ < θ〉 ∈W.

Proof.

For each α < κ, let Sαγ := {β | α < β < κ, c(α, β) = γ} for all γ < θ.
Work in V . If there exists some α < κ such that Sαγ is stationary for all
γ < θ, then we are done.
Towards a contradiction, suppose this is not the case.
For each α < κ, pick γα < θ and a club Dα ⊆ κ which is disjoint from Sαγα .
Fix a stationary S ⊆ κ on which α 7→ γα is constant, with value, say, γ∗.
Put D :=

⋂
α<θ Dα. Pick α < β both from S ∩ D such that c(α, β) = γ∗.

Then β ∈ D ∩ Sαγ∗ ⊆ Dα ∩ Sαγα , contradicting the choice of Dα.
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Never say never

In Dobrinen (2008), it is proved that if W ⊆ V is an inner model of ZFC
with the same ordinals, then the existence of an ω-sequence in V \W
together with the existence of mildly-strong colorings in W imply that for a
tail of regular cardinals κ, for all cardinals λ > κ, Pκ(λ) \W is stationary.

The above is an application of a strong coloring (indeed, to analyzing
outer models) that do not depend on whether the coloring remains strong
in the outer model.
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Playing with a Luzin set

Luzin set

An uncountable set of reals whose intersection with any nowhere dense set
is countable.

Note. CH =⇒ there exists a Luzin set =⇒ b = ℵ1.
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Playing with a Luzin set
Suppose that {xβ | β < ω1} is the injective enumeration of a Luzin subset
of ωω. Derive 〈fn : ω1 → ω | n < ω〉 by stipulating:

fn(β) := xβ(n).

Luzin set

An uncountable set of reals whose intersection with any nowhere dense set
is countable.
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Playing with a Luzin set
Suppose that {xβ | β < ω1} is the injective enumeration of a Luzin subset
of ωω. Derive 〈fn : ω1 → ω | n < ω〉 by stipulating:

fn(β) := xβ(n).

Claim 1

For every uncountable B ⊆ ω1, for a tail of n < ω, fn � B is onto.
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Playing with a Luzin set
Suppose that {xβ | β < ω1} is the injective enumeration of a Luzin subset
of ωω. Derive 〈fn : ω1 → ω | n < ω〉 by stipulating:

fn(β) := xβ(n).

Claim 1

For every uncountable B ⊆ ω1, for a tail of n < ω, fn � B is onto.

Proof.

Since B is uncountable, XB := {xβ | β ∈ B} is somewhere dense.
Pick t ∈ <ωω such that XB is dense in the basic open set
[t] := {f ∈ ωω | t ⊆ f }. Then for every s ∈ <ωω extending t and every
m < ω, there exists β ∈ B such that xβ ∈ [sa〈m〉].
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Playing with a Luzin set
Suppose that {xβ | β < ω1} is the injective enumeration of a Luzin subset
of ωω. Derive 〈fn : ω1 → ω | n < ω〉 by stipulating:

fn(β) := xβ(n).

Claim 1

For every uncountable B ⊆ ω1, for a tail of n < ω, fn � B is onto.

Proof.

Since B is uncountable, XB := {xβ | β ∈ B} is somewhere dense.
Pick t ∈ <ωω such that XB is dense in the basic open set
[t] := {f ∈ ωω | t ⊆ f }. Then for every s ∈ <ωω extending t and every
m < ω, there exists β ∈ B such that xβ ∈ [sa〈m〉]. That is, for every
n ≥ |t| and every m < ω, there exists β ∈ B s.t. fn(β) = xβ(n) = m.
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Playing with a Luzin set
Suppose that {xβ | β < ω1} is the injective enumeration of a Luzin subset
of ωω. Derive 〈fn : ω1 → ω | n < ω〉 by stipulating:

fn(β) := xβ(n).

Claim 1

For every uncountable B ⊆ ω1, for a tail of n < ω, fn � B is onto.

Fix injections 〈tβ : β → ω | β < ω1〉 such that {tβ � δ | β < ω1} is
countable for all δ < ω1. (e.g., compose the nodes of a special Aronszajn
tree with the witnessing specializing function.)
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Playing with a Luzin set
Suppose that {xβ | β < ω1} is the injective enumeration of a Luzin subset
of ωω. Derive 〈fn : ω1 → ω | n < ω〉 by stipulating:

fn(β) := xβ(n).

Claim 1

For every uncountable B ⊆ ω1, for a tail of n < ω, fn � B is onto.

Fix injections 〈tβ : β → ω | β < ω1〉 such that {tβ � δ | β < ω1} is
countable for all δ < ω1. (e.g., compose the nodes of a special Aronszajn
tree with the witnessing specializing function.)
Derive c : [ω1]2 → ω by letting for all α < β < ω1:

c(α, β) := ftβ(α)(β).
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Playing with a Luzin set
Suppose that {xβ | β < ω1} is the injective enumeration of a Luzin subset
of ωω. Derive 〈fn : ω1 → ω | n < ω〉 by stipulating:

fn(β) := xβ(n).

Claim 1

For every uncountable B ⊆ ω1, for a tail of n < ω, fn � B is onto.

Fix injections 〈tβ : β → ω | β < ω1〉 such that {tβ � δ | β < ω1} is
countable for all δ < ω1. Derive c : [ω1]2 → ω by letting for all α < β < ω1:

c(α, β) := ftβ(α)(β).

Claim 2

c witnesses ℵ1 9 [ℵ0;ℵ1]2ℵ0
.

That is, for every A ∈ [ℵ1]ω and B ∈ [ℵ1]ω1 , c[A~ B] = ℵ0.
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Playing with a Luzin set

Claim 1

For every uncountable B ⊆ ω1, for a tail of n < ω, fn � B is onto.

Fix injections 〈tβ : β → ω | β < ω1〉 such that {tβ � δ | β < ω1} is
countable for all δ < ω1. Derive c : [ω1]2 → ω by letting for all α < β < ω1:

c(α, β) := ftβ(α)(β).

Claim 2

c witnesses ℵ1 9 [ℵ0;ℵ1]2ℵ0
.

Proof.

Fix arbitrary A ∈ [ℵ1]ω,B ∈ [ℵ1]ω1 .
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Playing with a Luzin set

Claim 1

For every uncountable B ⊆ ω1, for a tail of n < ω, fn � B is onto.

Fix injections 〈tβ : β → ω | β < ω1〉 such that {tβ � δ | β < ω1} is
countable for all δ < ω1. Derive c : [ω1]2 → ω by letting for all α < β < ω1:

c(α, β) := ftβ(α)(β).

Claim 2

c witnesses ℵ1 9 [ℵ0;ℵ1]2ℵ0
.

Proof.

Fix arbitrary A ∈ [ℵ1]ω,B ∈ [ℵ1]ω1 .
Put δ := sup(A) + 1. By the pigeonhole principle, fix t : δ → ω and
B ′ ∈ [B]ω1 such that tβ � δ = t for all β ∈ B ′. Note that min(B) ≥ δ.
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Playing with a Luzin set

Claim 1

For every uncountable B ⊆ ω1, for a tail of n < ω, fn � B is onto.

Fix injections 〈tβ : β → ω | β < ω1〉 such that {tβ � δ | β < ω1} is
countable for all δ < ω1. Derive c : [ω1]2 → ω by letting for all α < β < ω1:

c(α, β) := ftβ(α)(β).

Claim 2

c witnesses ℵ1 9 [ℵ0;ℵ1]2ℵ0
.

Proof.

Fix arbitrary A ∈ [ℵ1]ω,B ∈ [ℵ1]ω1 .
Put δ := sup(A) + 1. By the pigeonhole principle, fix t : δ → ω and
B ′ ∈ [B]ω1 such that tβ � δ = t for all β ∈ B ′. Note that min(B) ≥ δ.
Pick a large enough n ∈ t“A such that fn � B ′ is onto.
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Playing with a Luzin set

Claim 1

For every uncountable B ⊆ ω1, for a tail of n < ω, fn � B is onto.

Fix injections 〈tβ : β → ω | β < ω1〉 such that {tβ � δ | β < ω1} is
countable for all δ < ω1. Derive c : [ω1]2 → ω by letting for all α < β < ω1:

c(α, β) := ftβ(α)(β).

Claim 2

c witnesses ℵ1 9 [ℵ0;ℵ1]2ℵ0
.

Proof.

Fix arbitrary A ∈ [ℵ1]ω,B ∈ [ℵ1]ω1 .
Put δ := sup(A) + 1. By the pigeonhole principle, fix t : δ → ω and
B ′ ∈ [B]ω1 such that tβ � δ = t for all β ∈ B ′. Note that min(B) ≥ δ.
Pick a large enough n ∈ t“A such that fn � B ′ is onto.
So, for α ∈ A such that t(α) = n, we have {c(α, β) | β ∈ B ′} = ℵ0.
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Playing with a Luzin set

Claim 1

For every uncountable B ⊆ ω1, for a tail of n < ω, fn � B is onto.

Fix injections 〈tβ : β → ω | β < ω1〉 such that {tβ � δ | β < ω1} is
countable for all δ < ω1. Derive c : [ω1]2 → ω by letting for all α < β < ω1:

c(α, β) := ftβ(α)(β).

Claim 2

c witnesses ℵ1 9 [ℵ0;ℵ1]2ℵ0
.

And, if we wish, we can apply some stretching:

Theorem (Todorcevic, 1987 [extending Erdős-Hajnal-Milner, 1966])

If there exists a Luzin set, then ℵ1 9 [ℵ0;ℵ1]2ℵ1
.
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Rectangles vs. squares

Theorem (Todorcevic, 1987)

ℵ1 9 [ℵ1]2ℵ0
.

Theorem (Moore, 2006)

ℵ1 9 [ℵ1;ℵ1]2ℵ0
.

Theorem (Galvin-Shelah, 1973)

2ℵ0 9 [2ℵ0 ]2ℵ0
.
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Rectangles vs. squares

Theorem (Todorcevic, 1987)

ℵ1 9 [ℵ1]2ℵ0
.

Theorem (Moore, 2006)

ℵ1 9 [ℵ1;ℵ1]2ℵ0
.

Theorem (Galvin-Shelah, 1973)

2ℵ0 9 [2ℵ0 ]2ℵ0
.

The following is still open.

Problem 3

Does 2ℵ0 9 [2ℵ0 ; 2ℵ0 ]2ℵ0
follow from ZFC?
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Rectangles vs. squares

Theorem (Todorcevic, 1987)

ℵ1 9 [ℵ1]2ℵ0
.

Theorem (Moore, 2006)

ℵ1 9 [ℵ1;ℵ1]2ℵ0
.

Theorem (Galvin-Shelah, 1973)

2ℵ0 9 [2ℵ0 ]2ℵ0
.

The following is still open.

Problem 3

Does 2ℵ0 9 [2ℵ0 ; 2ℵ0 ]22 follow from ZFC?
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Rectangular strong colorings are universal

Theorem (Erdős-Hajnal, 1978)

Suppose that c : [ℵ1]2 → θ witnesses ℵ1 9 [ℵ1;ℵ1]2θ.
That is, for every A,B ∈ [ℵ1]ω1 , c[A~ B] = θ.
Then c contains a copy of any countable 2-dimensional θ-coloring.
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Rectangular strong colorings are universal

Theorem (Erdős-Hajnal, 1978)

Suppose that c : [ℵ1]2 → θ witnesses ℵ1 9 [ℵ1;ℵ1]2θ.
That is, for every A,B ∈ [ℵ1]ω1 , c[A~ B] = θ.
Then c contains a copy of any countable 2-dimensional θ-coloring.

Reminder

c : [ℵ1]2 → θ is said to contain a copy of d : [ℵ0]2 → θ if there exists an
increasing sequence {αn}∞n=0 ⊆ ℵ1 such that

c(αn, αm) = d(n,m) for all n,m.
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Rectangular strong colorings are universal

Theorem (Erdős-Hajnal, 1978)

Suppose that c : [ℵ1]2 → ℵ0 witnesses ℵ1 9 [ℵ1;ℵ1]2ℵ0
.

That is, for every A,B ∈ [ℵ1]ω1 , c[A~ B] = ℵ0.
Then c admits an infinite rainbow set.
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Rectangular strong colorings are universal

Theorem (Hajnal, 2008)

Suppose that c : [ℵ1]2 → ℵ0 witnesses ℵ1 9 [ℵ1,ℵ1]2ℵ0
.

That is, for every A,B ∈ [ℵ1]ω1 , c[A× B] = ℵ0.
Then c admits an infinite rainbow set.

Assaf Rinot (Bar-Ilan University) Strong colorings and their applications July, 2017 16 / 19



Rectangular strong colorings are universal

Theorem (Hajnal, 2008)

Suppose that c : [ℵ1]2 → ℵ0 witnesses ℵ1 9 [ℵ1,ℵ1]2ℵ0
.

That is, for every A,B ∈ [ℵ1]ω1 , c[A× B] = ℵ0.
Then c admits an infinite rainbow set.

Todorcevic established ℵ1 9 [ℵ1]2ℵ0
in ZFC, but the following is still open.

Problem 4

Does there exist a rainbow-triangle-free coloring witnessing ℵ1 9 [ℵ1]2ℵ0
?
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Rectangular strong colorings are universal

Theorem (Hajnal, 2008)

Suppose that c : [ℵ1]2 → ℵ0 witnesses ℵ1 9 [ℵ1,ℵ1]2ℵ0
.

That is, for every A,B ∈ [ℵ1]ω1 , c[A× B] = ℵ0.
Then c admits an infinite rainbow set.

Todorcevic established ℵ1 9 [ℵ1]2ℵ0
in ZFC, but the following is still open.

Problem 4

Does there exist a rainbow-triangle-free coloring witnessing ℵ1 9 [ℵ1]2ℵ0
?

Consistent examples were constructed from CH (Shelah, 1975), a Luzin set
(Erdős-Hajnal, 1978), and a Souslin tree (Todorcevic, 1981).
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Rectangular strong colorings are universal

Theorem (Hajnal, 2008)

Suppose that c : [ℵ1]2 → ℵ0 witnesses ℵ1 9 [ℵ1,ℵ1]2ℵ0
.

That is, for every A,B ∈ [ℵ1]ω1 , c[A× B] = ℵ0.
Then c admits an infinite rainbow set.

Todorcevic established ℵ1 9 [ℵ1]2ℵ0
in ZFC, but the following is still open.

Problem 4

Does there exist a rainbow-triangle-free coloring witnessing ℵ1 9 [ℵ1]2ℵ0
?

Consistent examples were constructed from CH (Shelah, 1975), a Luzin set
(Erdős-Hajnal, 1978), and a Souslin tree (Todorcevic, 1981).

Shelah’s approach is surprising, so let us look at it.
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A strong coloring with no rainbow triangles

Shelah’s idea: use a ready-made coloring, and only construct its domain.

Theorem (Shelah, 1975)

CH entails X ⊆ 2ω of size ℵ1 such that c � [X ]2 witnesses ℵ1 9 [ℵ1]2ℵ0
.
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A strong coloring with no rainbow triangles

Shelah’s idea: use a ready-made coloring, and only construct its domain.

The Cantor space

Consider the Cantor space 〈2ω, d〉, where d : [2ω]2 → Q is derived from
the product topology. That is, d(f , g) := 1

2∆(f ,g) , where

∆(f , g) := min{m < ω | f (m) 6= g(m)}.

Theorem (Shelah, 1975)

CH entails X ⊆ 2ω of size ℵ1 such that c � [X ]2 witnesses ℵ1 9 [ℵ1]2ℵ0
.
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A strong coloring with no rainbow triangles

Shelah’s idea: use a ready-made coloring, and only construct its domain.

The Cantor space

Consider the Cantor space 〈2ω, d〉, where d : [2ω]2 → Q is derived from
the product topology. That is, d(f , g) := 1

2∆(f ,g) , where

∆(f , g) := min{m < ω | f (m) 6= g(m)}.

Then d is ultrametric, so that d (and ∆) admit no rainbow triangles.

Theorem (Shelah, 1975)

CH entails X ⊆ 2ω of size ℵ1 such that c � [X ]2 witnesses ℵ1 9 [ℵ1]2ℵ0
.
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A strong coloring with no rainbow triangles

Shelah’s idea: use a ready-made coloring, and only construct its domain.

The Cantor space

Consider the Cantor space 〈2ω, d〉, where d : [2ω]2 → Q is derived from
the product topology. That is, d(f , g) := 1

2∆(f ,g) , where

∆(f , g) := min{m < ω | f (m) 6= g(m)}.

Then d is ultrametric, so that d (and ∆) admit no rainbow triangles.
Fix a surjection ψ : ω → ω such that the preimage of any singleton is
infinite, and put c := ψ ◦∆.

Theorem (Shelah, 1975)

CH entails X ⊆ 2ω of size ℵ1 such that c � [X ]2 witnesses ℵ1 9 [ℵ1]2ℵ0
.
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A strong coloring with no rainbow triangles

Shelah’s idea: use a ready-made coloring, and only construct its domain.

The Cantor space

Consider the Cantor space 〈2ω, d〉, where d : [2ω]2 → Q is derived from
the product topology. That is, d(f , g) := 1

2∆(f ,g) , where

∆(f , g) := min{m < ω | f (m) 6= g(m)}.

Then d is ultrametric, so that d (and ∆) admit no rainbow triangles.
Fix a surjection ψ : ω → ω such that the preimage of any singleton is
infinite, and put c := ψ ◦∆. So c admits no rainbow triangles.

Theorem (Shelah, 1975)

CH entails X ⊆ 2ω of size ℵ1 such that c � [X ]2 witnesses ℵ1 9 [ℵ1]2ℵ0
.
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Transforming rectangles into squares

Recall Problem 3

Does 2ℵ0 9 [2ℵ0 ; 2ℵ0 ]22 follow from ZFC?

Fact

For every successor cardinal κ, and every θ, the following are equivalent:

κ9 [κ]2θ;

κ9 [κ;κ]2θ.
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Transforming rectangles into squares

Theorem

For every infinite cardinal λ, there exists a function rts : [λ+]2 → [λ+]2

with the following property;
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Transforming rectangles into squares

Theorem

For every infinite cardinal λ, there exists a function rts : [λ+]2 → [λ+]2

with the following property; For all subsets A,B ⊆ λ+ of size λ+,
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Transforming rectangles into squares

Theorem

For every infinite cardinal λ, there exists a function rts : [λ+]2 → [λ+]2
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Assaf Rinot (Bar-Ilan University) Strong colorings and their applications July, 2017 18 / 19



Transforming rectangles into squares

Theorem

For every infinite cardinal λ, there exists a function rts : [λ+]2 → [λ+]2

with the following property; For all subsets A,B ⊆ λ+ of size λ+,
there exists a subset C ⊆ λ+ of size λ+ such that

rts[A~ B] ⊇ C ~ C .
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Transforming rectangles into squares

(Shelah, 1990) for λ regular > 2ℵ0 ;

(Shelah, 1991) for λ regular > ℵ1;

(Shelah, 1997) for λ = ℵ1;

Theorem

For every infinite cardinal λ, there exists a function rts : [λ+]2 → [λ+]2

with the following property; For all subsets A,B ⊆ λ+ of size λ+,
there exists a subset C ⊆ λ+ of size λ+ such that

rts[A~ B] ⊇ C ~ C .
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Transforming rectangles into squares

(Shelah, 1990) for λ regular > 2ℵ0 ;

(Shelah, 1991) for λ regular > ℵ1;

(Shelah, 1997) for λ = ℵ1;

(Moore, 2006) for λ = ℵ0;

Theorem

For every infinite cardinal λ, there exists a function rts : [λ+]2 → [λ+]2

with the following property; For all subsets A,B ⊆ λ+ of size λ+,
there exists a subset C ⊆ λ+ of size λ+ such that

rts[A~ B] ⊇ C ~ C .

Assaf Rinot (Bar-Ilan University) Strong colorings and their applications July, 2017 18 / 19



Transforming rectangles into squares

(Shelah, 1990) for λ regular > 2ℵ0 ;

(Shelah, 1991) for λ regular > ℵ1;

(Shelah, 1997) for λ = ℵ1;

(Moore, 2006) for λ = ℵ0;

(Rinot, 2012) for λ singular.

Theorem

For every infinite cardinal λ, there exists a function rts : [λ+]2 → [λ+]2

with the following property; For all subsets A,B ⊆ λ+ of size λ+,
there exists a subset C ⊆ λ+ of size λ+ such that

rts[A~ B] ⊇ C ~ C .
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Transforming rectangles into squares

(Shelah, 1990) for λ regular > 2ℵ0 ;

(Shelah, 1991) for λ regular > ℵ1;

(Shelah, 1997) for λ = ℵ1;

(Moore, 2006) for λ = ℵ0;

(Rinot, 2012) for λ singular;

(Todorcevic-Rinot, 2013) uniform proof for all regular λ.

Theorem

For every infinite cardinal λ, there exists a function rts : [λ+]2 → [λ+]2

with the following property; For all subsets A,B ⊆ λ+ of size λ+,
there exists a subset C ⊆ λ+ of size λ+ such that

rts[A~ B] ⊇ C ~ C .
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Transforming rectangles into squares

Corollary

For every successor cardinal κ, and every θ, the following are equivalent:

κ9 [κ]2θ;

κ9 [κ;κ]2θ.

Proof.

If c witnesses κ9 [κ]2θ, then c ◦ rts witnesses κ9 [κ;κ]2θ.
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Colorings triples

Theorem (Shore, 1974)

If ℵ1 9 [ℵ0;ℵ1]2ℵ1
and there exists a Kurepa tree, then ℵ2 9 [ℵ1]3ℵ1

.

Let c : [ℵ1]2 → ℵ1 be a witness to ℵ1 9 [ℵ0;ℵ1]2ℵ1
.

Let {bα | α < ℵ2} be the injective enumeration of branches through some
fixed Kurepa subtree of <ω12. For each α < β < γ < ℵ2, denote

δ(α, β, γ) := {∆(bα, bβ),∆(bα, bγ),∆(bβ, bγ)},
so that δ(α, β, γ) is an element of [ℵ1]2.
Derive d : [ℵ2]3 → ℵ1 by stipulating:

d(α, β, γ) := c(δ(α, β, γ)).

This works!

Theorem (Todorcevic, 1994)

ℵ2 9 [ℵ1]3ℵ0
.
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