
COMPLICATED COLORINGS
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Abstract. If 𝜆, 𝜅 are regular cardinals, 𝜆 > 𝜅+, and 𝐸𝜆
≥𝜅 admits a nonreflecting stationary

set, then Pr1(𝜆, 𝜆, 𝜆, 𝜅) holds.

1. Introduction

The theory of strong colorings was born with Sierpiński’s 1933 construction of a symmetric
function 𝑐 : R2 ∖∆ → 2 that does not admit an uncountable monochromatic square. For the
construction, one fixes a well-ordering <𝑊 of the reals, and contrast it with the usual ordering
<, by letting 𝑐(𝑥, 𝑦) = 1 iff (𝑥 < 𝑦 & 𝑥 <𝑊 𝑦) ∨ (𝑦 < 𝑥 & 𝑦 <𝑊 𝑥). The separability of R
then implies that for every uncountable set 𝐴 of reals, and every 𝑖 < 2, there exist 𝑥 <𝑊 𝑦
in 𝐴 such that 𝑐(𝑥, 𝑦) = 𝑖.

In the 1960’s, Erdős and his school initiated a systematic study of this sort of colorings,
and introduced the following piece of notation. We say that 𝜆 9 [𝜇]2𝜃 holds provided that
there exists a symmetric coloring of pairs 𝑑 : [𝜆]2 → 𝜃 with the property that for every
subset 𝐴 of 𝜆 of size 𝜇, and every color 𝛾 < 𝜃, there exist 𝛼 < 𝛽 in 𝐴 such that 𝑑(𝛼, 𝛽) = 𝛾.
So, Sierpiński’s partition is a witness to 2ℵ0 9 [ℵ1]

2
2. Erdős, Hajnal and Rado proved [2]

that, assuming the Generalized Continuum Hypothesis (GCH), 𝜆+ 9 [𝜆+]2𝜆+ holds for every
infinite cardinal 𝜆. On its face, the existence of such a coloring 𝑑 : [𝜆+]2 → 𝜆+ that attains
all possible colors on all squares of unbounded subsets of 𝜆+ appears to be the strongest
conceivable failure of Ramsey’s theorem at the level of successor cardinals. However, one
can ask for more. To see this, let us revisit Sierpiński’s example. Let 𝑅 be a “rectangle”
of the form {(𝑥, 𝑦) ∈ 𝐼 × 𝐽 | 𝑥 <𝑊 𝑦}, for disjoint real intervals 𝐼 and 𝐽 ;1 then 𝑐 � 𝑅 is a
constant function. So, while 𝑐 admits no monochromatic uncountable squares, it does admit
monochromatic uncountable rectangles. In contrast, the Erdős-Hajnal-Rado coloring does
attain all colors even on rectangles. Of course, this appears to come with a price: the Erdős-
Hajnal-Rado construction requires the GCH. We refer the reader to [8],[10] for a resolution
of this particular aspect, and turn now to a further finer concept:

Definition (Shelah, [12]). Pr1(𝜆, 𝜇, 𝜃, 𝜒) asserts the existence of a coloring 𝑑 : [𝜆]2 → 𝜃 such
that for any family 𝒜 ⊆ [𝜆]<𝜒 of size 𝜇, consisting of pairwise disjoint sets, and every color
𝛾 < 𝜃, there exist 𝑎, 𝑏 ∈ 𝒜 with sup(𝑎) < min(𝑏) satisfying 𝑑[𝑎× 𝑏] = {𝛾}.

So, Sierpiński’s example is a coloring satisfying Pr1(2
ℵ0 ,ℵ1, 2, 2), that fails to satisfy

Pr1(2
ℵ0 ,ℵ1, 2, 3). This justifies the inclusion of the fourth parameter 𝜒. Another justifi-

cation, and, in fact, the origin of this concept, is in its effect on questions concerning chain
conditions of product of topological spaces and related objects. For example, Galvin [4]
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1By convention, for sets of ordinals 𝐴,𝐵, one associates the “rectangle” 𝐴~𝐵 = {(𝛼, 𝛽) ∈ 𝐴×𝐵 | 𝛼 < 𝛽}.
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proved that Pr1(𝜆, 𝜆, 2, 𝜔) entails two 𝜆-cc Boolean algebras whose product is not 𝜆-cc (see
also [14] and [9]).

Now, what about the third parameter 𝜃? Here, we mention that, for example, Shelah
proved [16] that Pr1(𝜆

+, 𝜆+, cf(𝜆), cf(𝜆)) holds for every singular cardinal 𝜆, whereas the
question of whether Pr1(𝜆

+, 𝜆+, 𝜆+, cf(𝜆)) (or just Pr1(𝜆
+, 𝜆+, 𝜆, 2)) holds for every singular

cardinal 𝜆 is the oldest open problem of this field.
A major breakthrough by Todorčević [20] was proving that ℵ1 9 [ℵ1]

2
ℵ1

holds outright in
ZFC. Moreover, in the presence of a nonreflecting stationary set, Todorčević’s technology
generalizes to arbitrary regular cardinals > ℵ1, yielding:

Theorem 1.1 (Todorčević, [20]; see also Shelah [13]). If 𝜆 > ℵ1 is a regular cardinal that
admits a nonreflecting stationary set, then 𝜆9 [𝜆]2𝜆. That is, Pr1(𝜆, 𝜆, 𝜆, 𝜒) holds for 𝜒 = 2.

This raises the question whether under the same hypothesis, the above holds true also for
higher 𝜒’s?

This particular question and its variations were studied systematically by Shelah in a se-
quence of papers [11],[12],[13],[14],[15],[18],[19], and in his monograph [16]. Roughly speak-
ing, the difficulty in establishing Pr1(𝜆, 𝜆, 𝜆, 𝜒) for 𝜒 > 2 is the need for some room to either
derive several oscillation functions (and then to contrast them), or to enforce repetitions that
allow to find for every family 𝒜 ⊆ [𝜆]<𝜒 as in Definition 1, an equipotent subfamily 𝒜′ ⊆ 𝒜
which is, less diverse or more tamed, in various senses. In [14], this was obtained through
the arithmetic assumption “2𝜒 < 𝜆”, and in [15], Pr1(𝜆, 𝜆, 𝜆, 𝜒) was established for 𝜒 = ℵ0

and a cardinal 𝜆 that admits a nonreflecting stationary set 𝑆 ⊆ 𝜆, through the requirement
that for all 𝛼 ∈ 𝑆, cf(𝛼) is at least the double-successor of 𝜒. Later on, in [18], it was proved
that Pr1(𝜒

++, 𝜒++, 𝜒++, 𝜒) holds for every regular cardinal 𝜒.
In this paper, we eliminate the arithmetic hypothesis from [14], eliminate the “double

successor” cofinality gap requirement from [15], obtain the main results of [18][19] as a
corollary, and indeed increase 𝜒 from 2 to 𝜔 in Theorem 1.1 above. It is proved:

Main Result. If 𝜆, 𝜒 are regular cardinal, 𝜆 > 𝜒+, and 𝐸𝜆
≥𝜒 admits a nonreflecting station-

ary set, then Pr1(𝜆, 𝜆, 𝜆, 𝜒) holds.

1.1. About the proof. In [18], Shelah introduced a coloring principle Pr6(𝜅, 𝜅, 𝜃, 𝜒), proved
that Pr6(𝜇

+, 𝜇+, 𝜇+, 𝜇) holds for every regular cardinal 𝜇, and provided a lifting theorem:

Theorem 1.2 (Shelah, [18]). If Pr6(𝜅, 𝜅, 𝜃, 𝜒) holds, 𝜒 ≤ 𝜅 < cf(𝜆) = 𝜆, and there exists a
nonreflecting stationary subset of 𝐸𝜆

≥𝜅, then Pr1(𝜆, 𝜆, 𝜃, 𝜒) holds.

Unfortunately, if 𝜃 is considerably smaller than 𝜆, it is unclear how to infer Pr1(𝜆, 𝜆, 𝜆, 𝜒)
from Pr1(𝜆, 𝜆, 𝜃, 𝜒).2 So, for instance, it is unclear how to deduce the main result of [15]
from the above strategy. Moreover, by Ramsey’s theorem, Pr6(𝜅, 𝜅, 𝜃, 𝜒) fails for 𝜅 = ℵ0

and 𝜃 ≥ 2, so if 𝜆 admits a nonreflecting stationary set, but every stationary subset of 𝐸𝜆
>𝜔

reflects, then the above theorem does not come into play.
In this paper, we introduce a relative of Pr6 that overcomes these two barriers. We name

it Pℓ6, and prove:

Theorem 1.3. If Pℓ6(𝜅, 𝜒) holds, 𝜒 ≤ 𝜅 < cf(𝜆) = 𝜆, and there exists a nonreflecting
stationary subset of 𝐸𝜆

≥𝜒, then Pr1(𝜆, 𝜆, 𝜆, 𝜒) holds.

2Recall the problem mentioned earlier concerning successor of singulars.
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This time, the main result of [15] does follow as a corollary, provided that Pℓ6(ℵ2,ℵ0)
(or Pℓ6(ℵ1,ℵ0)) hold. But does Pℓ6(ℵ2,ℵ0) hold? It does. In fact, it will be proved that
Pℓ6(𝜇

+, 𝜇) holds for every regular cardinal 𝜇. Consequently:

Corollary 1.4. If 𝜆 > ℵ1 is a regular cardinal that admits a nonreflecting stationary set,
then Pr1(𝜆, 𝜆, 𝜆,ℵ0) holds.

The preceding is optimal, since Martin’s Axiom, MAℵ1 , entails the failure of Pr1(ℵ1,ℵ1, 2,ℵ0).
3

1.2. Conventions. For a set 𝑎 of ordinals, denote acc+(𝑎) := {𝛼 < sup(𝑎) | sup(𝑎∩𝛼) = 𝛼},
acc(𝑎) := 𝑎∩acc+(𝑎) and nacc(𝑎) := 𝑎∖acc(𝑎). For 𝑖 < otp(𝑎), we let 𝑎(𝑖) denote the unique
ordinal 𝛼 ∈ 𝑎 such that otp(𝑎∩𝛼) = 𝑖. The length of a finite sequence 𝜎 is denoted by ℓ(𝜎).
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on [18], and of course, the author of [18], S. Shelah, for serving as an endless source of
inspiration.

The results of this paper were announced in a talk in the Set Theory workshop in Oberwol-
fach, January 2014. The proofs were subsequently presented in detail through two informal
sessions; I thank J. Cummings, T. Eisworth, J. T. Moore, D. Raghavan, S. Todorčević, and
B. Veličković for their comments, objections and suggestions.

I am grateful to M. Gitik for detecting an error in one of the early versions of my proof.

2. The decomposition principle Pℓ6

This section is dedicated to the study of the following notion.

Definition 2.1. Pℓ6(𝜅, 𝜒) asserts the existence of a coloring 𝑐 : <𝜔𝜅 → 𝜔 satisfying the
following. For every sequence ⟨(𝑢𝛼, 𝑣𝛼, 𝜌𝛼) | 𝛼 < 𝜅⟩ and 𝜙 : 𝜅→ 𝜅 with

(1) 𝜙 is eventually regressive. That is, 𝜙(𝛼) < 𝛼 for co-boundedly many 𝛼 < 𝜅;
(2) 𝑢𝛼 and 𝑣𝛼 are nonempty elements of [<𝜔𝜅]<𝜒;
(3) 𝛼 ∈ Im(𝜂) for all 𝜂 ∈ 𝑢𝛼;
(4) 𝜌𝛼

⌢⟨𝛼⟩ ⊑ 𝜌 for all 𝜌 ∈ 𝑣𝛼,

there exist 𝛼 < 𝛽 < 𝜅 with 𝜙(𝛼) = 𝜙(𝛽) such that 𝑐(𝜂⌢𝜌) = ℓ(𝜂) for all 𝜂 ∈ 𝑢𝛼 and 𝜌 ∈ 𝑣𝛽.

At a first glance, it may seem that Pℓ6 puts an impossible task on 𝑐: decomposing a
concatenated sequence back into its original ingredients. Yet, the main result of this section
reads as follows.

Theorem 2.2. Pℓ6(𝜇
+, 𝜇) holds for every regular cardinal 𝜇.

Theorem 2.2 is obtained as an immediate corollary to Theorems 2.3 and 2.6 below, which
are somewhat more informative.

Theorem 2.3. Suppose that 𝜇 is a regular cardinal, and there exists a cardinal 𝜃 < 𝜇 with
2𝜃 ≥ 𝜇. Then the following strong form of Pℓ6(𝜇

+, 𝜇) holds. Write 𝜅 := 𝜇+ and Γ := 𝐸𝜅
𝜇.

There exists a coloring 𝑐 : <𝜔𝜅 → 𝜔 × 𝜅 × 𝜅 × 𝜅, such that for every 𝛾* < 𝜅, a sequence
⟨(𝑢𝛼, 𝑣𝛼, 𝜌𝛼) | 𝛼 ∈ Γ⟩, and 𝜙 : Γ → 𝜅 satisfying clauses (1)—(4) of Definition 2.1, there exist
𝛼 < 𝛽 in Γ with 𝜙(𝛼) = 𝜙(𝛽) such that 𝑐(𝜂⌢𝜌) = (ℓ(𝜂), 𝛼, 𝛽, 𝛾*) for all 𝜂 ∈ 𝑢𝛼 and 𝜌 ∈ 𝑣𝛽.

3Kunen [6], Rowbottom [5], Solovay, and others (see [3, S41M]) proved that MAℵ1 implies that the product
of any two ccc topological spaces is again ccc, while Galvin [4] proved that Pr1(ℵ1,ℵ1, 2,ℵ0) entails two ccc
topological spaces X,Y for which X× Y is not ccc.
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Proof. We commence with the construction of the coloring, and then verify that this works.

The coloring. Let
−→
𝐶 = ⟨𝐶𝛿 | 𝛿 < 𝜅⟩ be a sequence such that 𝐶𝛿 is a club in 𝛿 of minimal

order-type for every limit 𝛿 < 𝜅, and such that 𝐶𝛿+1 = {𝛿} for all 𝛿 < 𝜅. By [18, Claim
3.1],[18, Lemma 3.10] and the existence of 𝜃 < 𝜇 with 2𝜃 ≥ 𝜇, we may moveover require that
−→
𝐶 � Γ enjoys the following form of club guessing.4 There exist ⟨𝑔𝛿 : 𝐶𝛿 → 𝜔 | 𝛿 ∈ Γ⟩ and
𝜓 : 𝜅→ 𝜅 with the property that for every club 𝐷 ⊆ 𝜅, and every 𝛾* < 𝜅, there exists some
𝛿 ∈ Γ with 𝜓(𝛿) = 𝛾* such that sup{𝜁 ∈ nacc(𝐶𝛿) ∩𝐷 | 𝑔𝛿(𝜁) = 𝑛} = 𝛿 for all 𝑛 < 𝜔.

Let 𝑑 : [𝜅]2 → 𝜔 be a coloring that satisfies 𝑑(𝛼, 𝛽) = 𝑔𝛽(min(𝐶𝛽 ∖ 𝛼)) for all 𝛼 ∈ 𝛽 ∈ Γ.
Next, given a sequence 𝜎 ∈ <𝜔𝜅, let

𝒟𝜎 := {(𝑖, 𝑗) | 𝑖 < 𝑗 < ℓ(𝜎) & 𝜎(𝑖) < 𝜎(𝑗)},

and whenever 𝒟𝜎 ̸= ∅, set

∙ m𝜎 := max{otp(𝐶𝜎(𝑗) ∩ 𝜎(𝑖)) | (𝑖, 𝑗) ∈ 𝒟𝜎};
∙ 𝒫𝜎 := {(𝑖, 𝑗) ∈ 𝒟𝜎 | otp(𝐶𝜎(𝑗) ∩ 𝜎(𝑖)) = m𝜎};
∙ 𝑗𝜎 := min{𝑗 | ∃𝑖 (𝑖, 𝑗) ∈ 𝒫𝜎};
∙ 𝛼𝜎 := min{𝜎(𝑖) | ∃𝑗 (𝑖, 𝑗) ∈ 𝒫𝜎};
∙ 𝛽𝜎 := 𝜎(𝑗𝜎).

Define 𝑐𝑖 : <𝜔𝜅→ 𝜅 for 𝑖 < 4 so that for every 𝜎 ∈ <𝜔𝜅 with 𝒟𝜎 ̸= ∅:

∙ 𝑐0(𝜎) = max{0, 𝑗𝜎 − 𝑑(𝛼𝜎, 𝛽𝜎)};
∙ 𝑐1(𝜎) := 𝛼𝜎;
∙ 𝑐2(𝜎) := 𝛽𝜎;
∙ 𝑐3(𝜎) := 𝜓(𝛽𝜎).

We claim that 𝜎 ↦→ (𝑐0(𝜎), 𝑐1(𝜎), 𝑐2(𝜎), 𝑐3(𝜎)) works.

Verification. Suppose that we are given a sequence ⟨(𝑢𝛼, 𝑣𝛼, 𝜌𝛼) | 𝛼 ∈ Γ⟩ together with a
prescribed color 𝛾* < 𝜅, and a map 𝜙 : Γ → 𝜅, as in the statement of the theorem. Note
that, without loss of generality, we may assume that 𝛼 ̸∈ Im(𝜌𝛼) for all 𝛼 ∈ Γ. Indeed, we
may assume that 𝜌𝛼 denotes the shortest possible sequence to satisfy 𝜌𝛼

⌢⟨𝛼⟩ ⊑ 𝜌 for all
𝜌 ∈ 𝑣𝛼.

Let 𝜆 be a large enough regular cardinal, and let E𝜆 be a well-ordering of ℋ𝜆. Let
⟨𝑀𝛿 | 𝛿 < 𝜅⟩ be a continuous ∈-chain of elementary submodels of (ℋ𝜆,∈,E𝜆), each of size
𝜇, such that 𝜇 ⊆𝑀0 and {⟨𝐶𝛿 | 𝛿 ∈ Γ⟩, ⟨(𝑢𝛼, 𝑣𝛼, 𝜌𝛼) | 𝛼 ∈ Γ⟩, 𝜙} ∈𝑀0.

Write 𝐷 := {𝛿 < 𝜅 | 𝑀𝛿 ∩ 𝜅 = 𝛿}. By the club-guessing feature of ⟨𝐶𝛿 | 𝛿 ∈ Γ⟩, let us
pick 𝛽 ∈ Γ with 𝜓(𝛽) = 𝛾* such that sup{𝜁 ∈ nacc(𝐶𝛽) ∩𝐷 | 𝑔𝛽(𝜁) = 𝑛} = 𝛽 for all 𝑛 < 𝜔.
In particular, 𝛽 ∈ 𝐷 and 𝜙(𝛽) < 𝛽. We shall find 𝛼 ∈ 𝛽 ∩ Γ with 𝜙(𝛼) = 𝜙(𝛽) such that
𝑐0(𝜂

⌢𝜌) = ℓ(𝜂), 𝑐1(𝜂
⌢𝜌) = 𝛼, 𝑐2(𝜂

⌢𝜌) = 𝛽 and 𝑐3(𝜂
⌢𝜌) = 𝛾* for all 𝜂 ∈ 𝑢𝛼 and 𝜌 ∈ 𝑣𝛽.

Define ℎ : [𝜅]<𝜇 → 𝜇 by stipulating

ℎ(𝑧) := sup{otp(𝐶𝛽′ ∩ 𝛼′) | 𝛼′ < 𝛽′ are in 𝑧}.

For every 𝛿 ∈ Γ, write 𝑎𝛿 :=
⋃︀
{Im(𝜎) | 𝜎 ∈ 𝑢𝛿 ∪ 𝑣𝛿}, and 𝑥𝛿 := 𝑎𝛿 ∖ 𝛿.

Put 𝜉 := sup(𝑎𝛽 ∩ 𝛽) + 1. As |𝑎𝛽| < cf(𝛽), we have 𝜉 < 𝛽. Let 𝑓 : 𝜇 → 𝜉 be the E𝜆-least
surjection. By |𝑎𝛽| < 𝜇 and regularity of the latter, let 𝑖′ < 𝜇 be large enough so that

4This is the only application of the arithmetic hypothesis in the whole proof.
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𝑎𝛽 ∩ 𝛽 ⊆ 𝑓 [𝑖′]. Write 𝑛* := ℓ(𝜌𝛽), 𝑧 := 𝑓 [𝑖′], 𝜖 := ℎ(𝑎𝛽 ∪ 𝑧), 𝜏 := 𝜙(𝛽), and

𝑇 := {𝛿 ∈ Γ | 𝑎𝛿 ∩ 𝛿 ⊆ 𝑧, ℎ(𝑎𝛿 ∪ 𝑧) = 𝜖, 𝜙(𝛿) = 𝜏}.
Pick a large enough 𝜁 ∈ nacc(𝐶𝛽)∩𝐷 above max{𝜉, 𝜏} such that 𝑔𝛽(𝜁) = 𝑛*, and otp(𝐶𝛽∩

𝜁) > 𝜖. By 𝜉, 𝜏 ∈ 𝑀𝜁 , we have 𝑇 ∈ 𝑀𝜁 . Since 𝛽 ∈ 𝑇 ∖𝑀𝜁 , we have sup(𝑇 ∩𝑀𝜁) = 𝜁. So,
pick a large enough 𝛼 ∈ 𝑇 ∩𝑀𝜁 such that 𝛼 > max(𝐶𝛽 ∩ 𝜁). In particular, 𝜙(𝛼) = 𝜙(𝛽).

Claim 2.3.1. (1) ℎ(𝑎𝛼 ∪ 𝑧) = 𝜖;
(2) 𝑎𝛼 ∩ 𝛼 ⊆ 𝑧;
(3) 𝑥𝛼 ⊆ (max(𝐶𝛽 ∩ 𝜁), 𝜁). In particular, otp(𝐶𝛽 ∩ 𝛼) > 𝜖, and
(4) 𝑑(𝛼, 𝛽) = ℓ(𝜌𝛽).

Proof. (1) and (2) are consequences of the fact that 𝛼 is a member of 𝑇 .
(3) By 𝛼 ∈𝑀𝜁 , we have 𝑥𝛼 ∈𝑀𝜁 , and then sup(𝑥𝛼) < 𝜁. By 𝛼 ∈ Im(𝜂) for all 𝜂 ∈ 𝑢𝛼, we

have min(𝑥𝛼) = 𝛼. Altogether, max(𝐶𝛽 ∩ 𝜁) < 𝛼 = min(𝑥𝛼) ≤ sup(𝑥𝛼) < 𝜁. In particular,
otp(𝐶𝛽 ∩ 𝛼) = otp(𝐶𝛽 ∩ 𝜁) > 𝜖.

(4) By the previous clause, and the definition of 𝑑, we have 𝑑(𝛼, 𝛽) = 𝑔𝛽(𝜁) = 𝑛* =
ℓ(𝜌𝛽). �

To see that 𝛼, 𝛽 are as desired, suppose that we are given 𝜂 ∈ 𝑢𝛼 and 𝜌 ∈ 𝑣𝛽, and let us
show that 𝑐0(𝜎) = ℓ(𝜂), 𝑐1(𝜎) = 𝛼, 𝑐2(𝜎) = 𝛽 and 𝑐3(𝜎) = 𝛾*, for 𝜎 := 𝜂⌢𝜌.

By 𝛼 ∈ Im(𝜂) and 𝛽 ∈ Im(𝜌), there exist �̂� < �̂� < ℓ(𝜎) such that 𝜎(̂𝑖) = 𝛼 and 𝜎(�̂�) = 𝛽.

So (̂𝑖, �̂�) witnesses that 𝒟𝜎 ̸= ∅, and then by Claim 2.3.1(3), we have m𝜎 ≥ otp(𝐶𝛽 ∩ 𝛼) > 𝜖.

Claim 2.3.2. If (𝑖, 𝑗) ∈ 𝒫𝜎, then:

(1) {𝜎(𝑖), 𝜎(𝑗)} ̸⊆ (𝑎𝛼 ∪ 𝑧), and {𝜎(𝑖), 𝜎(𝑗)} ̸⊆ (𝑎𝛽 ∪ 𝑧);
(2) If 𝜎(𝑖) ∈ 𝑎𝛼, then 𝜎(𝑗) ̸∈ 𝑎𝛽 ∩ 𝛽;
(3) 𝜂 ⊑ 𝜎 � 𝑗;
(4) 𝜎(𝑗) = 𝛽;
(5) 𝜎(𝑖) ∈ 𝑥𝛼.

Proof. (1) If {𝜎(𝑖), 𝜎(𝑗)} ⊆ 𝑎𝛼 ∪ 𝑧, then otp(𝐶𝜎(𝑗) ∩𝜎(𝑖)) ≤ ℎ(𝑎𝛼 ∪ 𝑧) = 𝜖, by Claim 2.3.1(1).
Likewise, if {𝜎(𝑖), 𝜎(𝑗)} ⊆ 𝑎𝛽 ∪ 𝑧, then otp(𝐶𝜎(𝑗) ∩ 𝜎(𝑖)) ≤ ℎ(𝑎𝛽 ∪ 𝑧) = 𝜖, by definition of 𝜖.
However, otp(𝐶𝜎(𝑗) ∩ 𝜎(𝑖)) = m𝜎 > 𝜖.

(2) Otherwise, {𝜎(𝑖), 𝜎(𝑗)} ⊆ 𝑎𝛼 ∪ (𝑎𝛽 ∩ 𝛽) ⊆ 𝑎𝛼 ∪ 𝑧, contradicting the previous clause.
(3) By 𝜎 = 𝜂⌢𝜌, we have {𝜎(𝑖), 𝜎(𝑗)} ⊆ Im(𝜂) ∪ Im(𝜌) ⊆ 𝑎𝛼 ∪ 𝑎𝛽. So, by Clause (1),

together with 𝑖 < 𝑗 and 𝜎 = 𝜂⌢𝜌, we infer that 𝜎(𝑖) ∈ Im(𝜂) and 𝜎(𝑗) ∈ Im(𝜌). That is,
𝑖 < ℓ(𝜂) and 𝑗 ≥ ℓ(𝜂). In particular, 𝜎(𝑖) ∈ 𝑎𝛼 and 𝜎(𝑗) ∈ 𝑎𝛽.

(4) By 𝜎(𝑖) ∈ 𝑎𝛼, 𝜎(𝑗) ∈ 𝑎𝛽, and Clause (2), we have 𝜎(𝑗) ≥ 𝛽. Towards a contradiction,
suppose that 𝛽 < 𝜎(𝑗). Then by 𝜎(𝑖) ∈ 𝑎𝛼 and 𝛼 ∈ 𝛽 ∈ 𝐷, we have 𝜎(𝑖) < 𝛽 < 𝜎(𝑗), and
hence otp(𝐶𝜎(𝑗)∩𝜎(𝑖)) ≤ otp(𝐶𝜎(𝑗)∩𝛽). As 𝜎(𝑗), 𝛽 ∈ 𝑎𝛽, we then get that otp(𝐶𝜎(𝑗)∩𝜎(𝑖)) ≤
ℎ(𝑎𝛽) ≤ 𝜖, contradicting the fact that otp(𝐶𝜎(𝑗) ∩ 𝜎(𝑖)) = m𝜎 > 𝜖.

(5) Otherwise, 𝜎(𝑖) ∈ 𝑎𝛼∩𝛼 ⊆ 𝑧 and {𝜎(𝑖), 𝜎(𝑗)} ⊆ (𝑧∪𝑎𝛽), contradicting Clause (1). �

As 𝛽 ̸∈ Im(𝜌𝛽), we get from the preceding claim, and the minimality of 𝑗𝜎, that

𝜎 � (𝑗𝜎 + 1) = 𝜂⌢𝜌𝛽
⌢⟨𝛽⟩.

So 𝛽𝜎 = 𝛽 and 𝑗𝜎 = ℓ(𝜂⌢𝜌𝛽). By Clause (5) of the preceding, 𝛼𝜎 ∈ 𝑥𝛼. Then, by Claim
2.3.1(3), we get that otp(𝐶𝛽 ∩ 𝛼𝜎) = otp(𝐶𝛽 ∩ 𝛼). Recalling that min(𝑥𝛼) = 𝛼 ∈ Im(𝜂),
Claims 2.3.2(5) and 2.3.1(3), then imply that 𝛼𝜎 = 𝛼.

5



Altogether, by Claim 2.3.1(4):

∙ 𝜎 � (𝑗𝜎 − 𝑑(𝛼𝜎, 𝛽𝜎)) = (𝜂⌢𝜌) � (ℓ(𝜂⌢𝜌𝛽) − ℓ(𝜌𝛽)) = 𝜂;
∙ 𝑐0(𝜎) = max{0, 𝑗𝜎 − 𝑑(𝛼𝜎, 𝛽𝜎)} = ℓ(𝜂);
∙ 𝑐1(𝜎) = 𝛼𝜎 = 𝛼;
∙ 𝑐2(𝜎) = 𝛽𝜎 = 𝛽;
∙ 𝑐3(𝜎) = 𝜓(𝛽𝜎) = 𝛾*.

�

Our goal now is to handle the other case: 𝜇 strongly inaccessible (including 𝜇 = ℵ0). For
this, we first need to state and prove a straight-forward generalization of a fact from [20].

Theorem 2.4 (Todorčević, implicit in [20]). If 𝜇<𝜇 = 𝜇, then there exists a coloring 𝑑 :
[𝜇+]2 → 𝜇+ satisfying the following.

For every family 𝒜 ⊆ 𝒫(𝜇+) of size 𝜇+ consisting of pairwise disjoint sets of some fixed
order-type 𝜒 < 𝜇, and every color 𝛾* < 𝜇+, there exist 𝒜′ ∈ [𝒜]𝜇 and 𝑏 ∈ 𝒜 such that
sup(𝑎) < min(𝑏) and 𝑑(𝑎(𝑖), 𝑏(𝑖)) = 𝛾* for all 𝑎 ∈ 𝒜′ and 𝑖 < 𝜒.

Proof. Let ⟨𝑒𝛽 : 𝛽 → 𝜇 | 𝛽 < 𝜇+⟩ be a sequence of injections. Let ⟨𝑓𝛼 : 𝜇 → 𝜇 | 𝛼 < 𝜇+⟩ be
a sequence of pairwise distinct functions. Write ∆(𝛼, 𝛼) := ∞, and ∆(𝛼, 𝛽) := min{𝑖 < 𝜇 |
𝑓𝛼(𝑖) ̸= 𝑓𝛽(𝑖)} for distinct 𝛼, 𝛽 < 𝜇+. Put Γ := 𝐸𝜇+

𝜇 . Fix a surjection 𝜓 : 𝜇+ → 𝜇+ such that

Γ𝛾 := {𝛿 ∈ Γ | 𝜓(𝛿) = 𝛾} is stationary for every 𝛾 < 𝜇+. Define a coloring 𝑐 : [𝜇+]2 → 𝜇+

by letting for all 𝛼 < 𝛽 < 𝜇+:

𝑐(𝛼, 𝛽) := min({𝛿 ∈ [𝛼, 𝛽) | ∆(𝛼, 𝛽) ≥ 𝑒𝛽(𝛿)} ∪ {𝛽}).

Finally, let 𝑑(𝛼, 𝛽) := 𝜓(𝑐(𝛼, 𝛽)).
To see that 𝑑 works, suppose that 𝒜, 𝜒 and 𝛾* are as in the hypothesis. Let ℳ be an

elementary submodel of (ℋ𝜆,∈,C𝜆) for a large enough regular cardinal 𝜆, of size 𝜇, such that
{𝒜, ⟨𝑒𝛼 | 𝛼 < 𝜇+⟩, ⟨𝑓𝛼 | 𝛼 < 𝜇+⟩, <𝜇𝜇} ∈ ℳ, and ℳ∩ 𝜇+ ∈ Γ𝛾* . Denote 𝛿 := ℳ∩ 𝜇+. Pick
𝑏 ∈ 𝒜 with min(𝑏) > 𝛿. Our goal now is to find an 𝒜′ ∈ [𝒜∩ℳ]𝜇 such that 𝑐(𝑎(𝑖), 𝑏(𝑖)) = 𝛿
for all 𝑎 ∈ 𝒜′ and 𝑖 < 𝜒.

Put

∙ 𝜖 := sup{𝑒𝑏(𝑖)(𝛿) | 𝑖 < 𝜒};
∙ 𝑡 := ⟨𝑓𝑏(𝑖) � 𝜖 | 𝑖 < 𝜒⟩.

By <𝜇𝜇 ∈ ℳ and |<𝜇𝜇| = |ℳ|, we have 𝑡 ∈ ℳ, and hence the set

𝒜𝑡 := {𝑎 ∈ 𝒜 | 𝑡 = ⟨𝑓𝑎(𝑖) � 𝜖 | 𝑖 < 𝜒⟩}
belongs to ℳ. Since 𝑏 ∈ 𝒜𝑡 ∖ℳ, we get that |𝒜𝑡| = 𝜇+. Pick 𝑥 ∈ 𝒜𝑡 ∖ℳ. Put

∙ 𝜈 := sup{∆(𝑏(𝑖), 𝑥(𝑖)) | 𝑖 < 𝜒};
∙ 𝑠 := ⟨𝑓𝑥(𝑖) � (𝜈 + 1) | 𝑖 < 𝜒⟩;
∙ 𝐷 := {𝛿′ < 𝛿 | ∃𝑖 < 𝜒(𝑒𝑏(𝑖)(𝛿

′) ≤ 𝜈)}.

As 𝑒𝑏(𝑖) is injective for all 𝑖 < 𝜒, |𝐷| < 𝜇. Since 𝑥 ∈ 𝒜𝑠 ∖ ℳ, we get by elementarity
that for every 𝜏 < 𝛿, there exists 𝑎 ∈ 𝒜𝑠 ∩ℳ with min(𝑎) > 𝜏 . Put 𝒜′ := {𝑎 ∈ 𝒜𝑠 ∩ℳ |
min(𝑎) > sup(𝐷)}. By cf(𝛿) = 𝜇, we have |𝒜′| = 𝜇. Finally, to see that 𝑐(𝑎(𝑖), 𝑏(𝑖)) = 𝛿 for
all 𝑎 ∈ 𝒜′ and 𝑖 < 𝜒, fix an arbitrary 𝑎 ∈ 𝒜′ and 𝑖 < 𝜒. We have:

∙ 𝑡(𝑖) = 𝑓𝑏(𝑖) � 𝜖 by definition of 𝑡;
∙ 𝑡(𝑖) = 𝑓𝑥(𝑖) � 𝜖, since 𝑥 ∈ 𝒜𝑡, and then ∆(𝑏(𝑖), 𝑥(𝑖)) ≥ 𝜖;
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∙ 𝑠(𝑖) = 𝑓𝑥(𝑖) � (𝜈 + 1) by definition of 𝑠;
∙ 𝑠(𝑖) = 𝑓𝑎(𝑖) � (𝜈 + 1), since 𝑎 ∈ 𝒜𝑠, and then ∆(𝑎(𝑖), 𝑥(𝑖)) > 𝜈;
∙ 𝜖 ≤ ∆(𝑏(𝑖), 𝑥(𝑖)) ≤ 𝜈 < ∆(𝑎(𝑖), 𝑥(𝑖)), and hence 𝜖 ≤ ∆(𝑎(𝑖), 𝑏(𝑖)) ≤ 𝜈;
∙ ∆(𝑎(𝑖), 𝑏(𝑖)) ≥ 𝜖 ≥ 𝑒𝑏(𝑖)(𝛿), by definition of 𝜖.

It follows that if 𝑐(𝑎(𝑖), 𝑏(𝑖)) ̸= 𝛿, then there must exist some 𝛿′ ∈ [𝑎(𝑖), 𝛿) such that
∆(𝑎(𝑖), 𝑏(𝑖)) ≥ 𝑒𝑏(𝑖)(𝛿

′). But then, 𝜈 ≥ 𝑒𝑏(𝑖)(𝛿
′), meaning that 𝛿′ ∈ 𝐷, and contradicting the

fact that 𝑎(𝑖) ≥ min(𝑎) > sup(𝐷). So, 𝑐(𝑎(𝑖), 𝑏(𝑖)) = 𝛿 and 𝑑(𝑎(𝑖), 𝑏(𝑖)) = 𝛾*, as desired �

Lemma 2.5 (folklore). For every infinite cardinal 𝜇, there exists a function ℎ : [𝜇+]2 → 𝜇
such that:

(1) ℎ is locally small, that is, |{𝛼 < 𝛽 | ℎ(𝛼, 𝛽) ≤ 𝜖}| < 𝜇 for all (𝜖, 𝛽) ∈ 𝜇× 𝜇+;
(2) ℎ is transitive, that is, ℎ(𝛼, 𝛾) ≤ max{ℎ(𝛼, 𝛽), ℎ(𝛽, 𝛾)} for all 𝛼 < 𝛽 < 𝛾 < 𝜇+.

Proof. For every 𝛾 < 𝜇+, fix a surjection 𝜙𝛾 : 𝜇 → 𝛾. Put 𝐴𝑖
0 := ∅ for all 𝑖 < 𝜇. Now,

suppose that 𝛾 < 𝜇+ is an ordinal such that for all 𝛿 < 𝛾 and 𝑖 < 𝜇, we have |𝐴𝑖
𝛿| ≤ |𝑖|+ℵ0,

and {𝐴𝑖
𝛿 | 𝑖 < 𝜇} is a chain converging to 𝛿. For all 𝑖 < 𝜇, put:

𝐴𝑖
𝛾 := 𝜙𝛾[𝑖] ∪

⋃︁
{𝐴𝑖

𝛿 | 𝛿 ∈ 𝜙𝛾[𝑖]}.

Clearly, |𝐴𝑖
𝛾| ≤ |𝑖| + ℵ0, and {𝐴𝑖

𝛾 | 𝑖 < 𝜇} is a chain converging to 𝛾.

Then, define ℎ : [𝜇+]2 → 𝜇 by letting for all 𝛼 < 𝛽 < 𝜇+:

ℎ(𝛼, 𝛽) := min{𝑖 < 𝜇 | 𝛼 ∈ 𝐴𝑖
𝛽}.

As {𝛼 < 𝛽 | ℎ(𝛼, 𝛽) ≤ 𝜖} = 𝐴𝜖
𝛽 for all 𝜖 < 𝜇, the function ℎ is locally small.

We now prove that ℎ(𝛼, 𝛾) ≤ max{ℎ(𝛼, 𝛽), ℎ(𝛽, 𝛾)} holds for all 𝛼 < 𝛽 < 𝛾 < 𝜇+ by
induction on 𝛾 < 𝜇+.

Suppose that 𝛾 < 𝜇+ and that transitivity holds for all 𝛾′ < 𝛾. Let 𝛼 < 𝛽 < 𝛾 be arbitrary.
Write 𝑖 := max{ℎ(𝛼, 𝛽), ℎ(𝛽, 𝛾)}. By 𝛽 ∈ 𝐴𝑖

𝛾, there are two cases to consider:

I If 𝛽 ∈ 𝜙𝛾[𝑖], then by definition of 𝐴𝑖
𝛾, we have 𝐴𝑖

𝛽 ⊆ 𝐴𝑖
𝛾. So, by 𝛼 ∈ 𝐴𝑖

𝛽, we have

𝛼 ∈ 𝐴𝑖
𝛾, and hence ℎ(𝛼, 𝛾) ≤ 𝑖.

I If 𝛽 ∈ 𝐴𝑖
𝛿 for some 𝛿 ∈ 𝜙𝛾[𝑖], then ℎ(𝛽, 𝛿) ≤ 𝑖, and by the inductive hypothesis,

ℎ(𝛼, 𝛿) ≤ max{ℎ(𝛼, 𝛽), ℎ(𝛽, 𝛿)} ≤ 𝑖. So, 𝛼 ∈ 𝐴𝑖
𝛿, and hence 𝛼 ∈ 𝐴𝑖

𝛾. That is, ℎ(𝛼, 𝛾) ≤ 𝑖. �

Theorem 2.6. If 𝜇<𝜇 = 𝜇, then Pℓ6(𝜇
+, 𝜇) holds in the following strong sense.

Letting 𝜅 := 𝜇+, there exists a coloring 𝑐 : <𝜔𝜅 → 𝜔 × 𝜅 × 𝜅 × 𝜅, such that for every
𝛾* < 𝜅, and every sequence ⟨(𝑢𝛼, 𝑣𝛼, 𝜌𝛼) | 𝛼 ∈ Γ⟩, with

(1) Γ is an unbounded subset of 𝜅;
(2) 𝑢𝛼 and 𝑣𝛼 are nonempty elements of [<𝜔𝜅]<𝜇;
(3) 𝛼 ∈ Im(𝜂) for all 𝜂 ∈ 𝑢𝛼;
(4) 𝜌𝛼

⌢⟨𝛼⟩ ⊑ 𝜌 for all 𝜌 ∈ 𝑣𝛼,

there exist 𝛼 < 𝛽 in Γ satisfying 𝑐(𝜂⌢𝜌) = (ℓ(𝜂), 𝛼, 𝛽, 𝛾*) for all 𝜂 ∈ 𝑢𝛼 and 𝜌 ∈ 𝑣𝛽.

Proof. We commence with the construction of the coloring, and then verify that this works.

The coloring. Let ⟨𝑓𝛼 : 𝜇 → 2 | 𝛼 < 𝜇+⟩ be a sequence of pairwise distinct functions.
Write ∆(𝛼, 𝛼) := ∞, and ∆(𝛼, 𝛽) := min{𝑖 < 𝜇 | 𝑓𝛼(𝑖) ̸= 𝑓𝛽(𝑖)} for distinct 𝛼, 𝛽 < 𝜇+. Let
ℎ : [𝜇+]2 → 𝜇 be transitive and locally small. For every nonconstant sequence 𝜎 ∈ <𝜔𝜅, let

∙ 𝒟𝜎 := {(𝑖, 𝑗) | 𝑖 < 𝑗 < ℓ(𝜎) & ∀𝑗* < 𝑗(𝜎(𝑗*) < 𝜎(𝑗))};
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∙ ∆𝜎 := max{∆(𝜎(𝑖), 𝜎(𝑗)) | 𝑖 < 𝑗 < ℓ(𝜎) & 𝜎(𝑖) ̸= 𝜎(𝑗)};
∙ m𝜎 := max{ℎ(𝜎(𝑖), 𝜎(𝑗)) | (𝑖, 𝑗) ∈ 𝒟𝜎}, provided that 𝒟𝜎 ̸= ∅.
∙ 𝒫𝜎 := {(𝑖, 𝑗) ∈ 𝒟𝜎 | ℎ(𝜎(𝑖), 𝜎(𝑗)) = m𝜎}, provided that 𝒟𝜎 ̸= ∅.
∙ 𝑗𝜎 := min{𝑗 | ∃𝑖 (𝑖, 𝑗) ∈ 𝒫𝜎}, provided that 𝒟𝜎 ̸= ∅. Otherwise, let 𝑗𝜎 := 0.

By 𝜇<𝜇 = 𝜇, and [1], let us fix a sequence ⟨𝑔𝜏 : <𝜔𝜇+ → 𝜔 | 𝜏 < 𝜇⟩ with the property that
for every 𝑢 ∈ [<𝜔𝜇+]<𝜇 and 𝑔 : 𝑢→ 𝜔, one can find 𝜏 < 𝜇 with 𝑔 = 𝑔𝜏 � 𝑢.

Let 𝑑 : [𝜅]2 → 𝜅 be given by Theorem 2.4. Let 𝜓 : 𝜅 ↔ 𝜔 × 𝜇 × 𝜅 be a bijection. We
derive functions 𝑑0 : <𝜔𝜅→ 𝜔, 𝑑1 : <𝜔𝜅→ 𝜇, and 𝑑2 : <𝜔𝜅→ 𝜅, as follows.

Given a nonconstant sequence 𝜎 ∈ <𝜔𝜅, we find the least (say, in lexicographic order) pair
(𝑖, 𝑗) such that ∆(𝜎(𝑖), 𝜎(𝑗)) = ∆𝜎, and let 𝑑0(𝜎) := 𝑛, 𝑑1(𝜎) = 𝜏 , and 𝑑2(𝜎) := 𝛾, for the
unique (𝑛, 𝜏, 𝛾) such that 𝜓(𝑑(𝜎(𝑖), 𝜎(𝑗))) = (𝑛, 𝜏, 𝛾).

Define 𝑐0 : <𝜔𝜅→ <𝜔𝜅 by letting for every nonconstant 𝜎:

𝑐0(𝜎) :=

{︃
𝜎 � (𝑗𝜎 − 𝑑0(𝜎)), 𝑗𝜎 > 𝑑0(𝜎)

∅, otherwise
,

Define 𝑐𝑖 : <𝜔𝜅→ 𝜅 for 𝑖 ∈ {1, 2, 3} by letting for every nonconstant 𝜎:

∙ 𝑐1(𝜎) = 𝜎(𝑔𝑑1(𝜎)(𝑐0(𝜎)), provided that 𝑔𝑑1(𝜎)(𝑐0(𝜎)) < ℓ(𝜎). Otherwise, set 𝑐1(𝜎) := 0;
∙ 𝑐2(𝜎) := 𝜌(𝑔𝑑1(𝜎)(𝜌)), provided that 𝜎 = 𝑐0(𝜎)⌢𝜌, and 𝑔𝑑1(𝜎)(𝜌) < ℓ(𝜌). Otherwise,

set 𝑐2(𝜎) := 0;
∙ 𝑐3(𝜎) := 𝑑2(𝜎).

We claim that 𝜎 ↦→ (ℓ(𝑐0(𝜎)), 𝑐1(𝜎), 𝑐2(𝜎), 𝑐3(𝜎)) works.

Verification. Suppose that Γ is an unbounded subset of 𝜅, and ⟨(𝑢𝛼, 𝑣𝛼, 𝜌𝛼) | 𝛼 ∈ Γ⟩
together with a prescribed color 𝛾* < 𝜅 are given as in the statement of the theorem. We
shall find 𝛼 < 𝛽 in Γ such that 𝑐0(𝜂

⌢𝜌) = 𝜂, 𝑐1(𝜂
⌢𝜌) = 𝛼, 𝑐2(𝜂

⌢𝜌) = 𝛽 and 𝑐3(𝜂
⌢𝜌) = 𝛾*

for all 𝜂 ∈ 𝑢𝛼 and 𝜌 ∈ 𝑣𝛽.
For every 𝛿 ∈ Γ, write 𝑎𝛿 :=

⋃︀
{Im(𝜎) | 𝜎 ∈ 𝑢𝛿 ∪ 𝑣𝛿}. By 𝜇<𝜇 = 𝜇 and a standard

thinning-out procedure, we may assume the existence of 𝜒, 𝜒′, 𝜖, 𝑡, 𝑧, 𝑛*, 𝜏 * such that for all
𝛿 ∈ Γ:

(a) otp(𝑎𝛿) = 𝜒, and 𝑎𝛿(𝜒
′) = 𝛿;

(b) sup(∆“[𝑎𝛿]
2 ∪ ℎ“[𝑎𝛿]

2) = 𝜖;
(c) ⟨𝑓𝑎𝛿(𝑖) � (𝜖+ 1) | 𝑖 < 𝜒⟩ = 𝑡;
(d) {𝑎𝛿 | 𝛿 ∈ Γ} forms a ∆-system with root 𝑧; sup(𝑧) < min(𝑎𝛼 ∖ 𝑧) ≤ sup(𝑎𝛼) <

min(𝑎𝛿 ∖ 𝑧) for all 𝛼 < 𝛿 in Γ;
(e) 𝑛* = min{𝑛 | (𝜌𝛿

⌢⟨𝛿⟩)(𝑛) > sup(𝑧)};
(f) 𝜎(𝑔𝜏*(𝜎)) = 𝛿 for all 𝜎 ∈ 𝑢𝛿 ∪ 𝑣𝛿.

Claim 2.6.1. There exist 𝛼 < 𝛽 in Γ such that for all 𝜂 ∈ 𝑢𝛼 and 𝜌 ∈ 𝑣𝛽:

(1) 𝒟𝜂⌢𝜌 ̸= ∅;
(2) m𝜂⌢𝜌 > 𝜖;
(3) 𝑑0(𝜂

⌢𝜌) = 𝑛*, 𝑑1(𝜂
⌢𝜌) = 𝜏 *, and 𝑑2(𝜂

⌢𝜌) = 𝛾*.

Proof. Put 𝒜 := {𝑎𝛿 ∖ 𝑧 | 𝛿 ∈ Γ ∖ 𝑧}. By the choice of 𝑑, we now find 𝒜′ ∈ [𝒜]𝜇 and 𝑏 ∈ 𝒜
such that sup(𝑎) < min(𝑏) and 𝑑(𝑎(𝑖), 𝑏(𝑖)) = 𝜓−1(𝑛*, 𝜏 *, 𝛾*) for all 𝑎 ∈ 𝒜′ and 𝑖 < otp(𝑎).
Since |{𝛼 < 𝛽 | ℎ(𝛼) ≤ 𝜖}| < 𝜇 for all 𝛽 ∈ 𝑏, and |𝑏| < 𝜇, let us pick 𝑎 ∈ 𝒜′ such that
min(ℎ[𝑎× 𝑏]) > 𝜖.
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Pick 𝛼, 𝛽 ∈ Γ such that 𝑎 = 𝑎𝛼 ∖ 𝑧 and 𝑏 = 𝑎𝛽 ∖ 𝑧. By Clause (d) above, we have 𝛼 < 𝛽
and 𝑎𝛼 ∩ 𝑎𝛽 = 𝑧. Then, 𝑑(𝑎𝛼(𝑖), 𝑎𝛽(𝑖)) = 𝜓−1(𝑛*, 𝜏 *, 𝛾*) whenever otp(𝑧) ≤ 𝑖 < 𝜒.

Suppose that 𝜂 ∈ 𝑢𝛼 and 𝜌 ∈ 𝑣𝛽 are given, and write 𝜎 := 𝜂⌢𝜌.
(1) Since 𝛼 ∈ Im(𝜂) and 𝛽 ∈ Im(𝜌), we infer the existence of a pair (𝑖′, 𝑗′) such that

𝑖′ is the least to satisfy 𝜎(𝑖′) = 𝛼, and 𝑗′ is the least to satisfy 𝜎(𝑗′) > sup(𝑎𝛼). Then
(𝑖′, 𝑗′) ∈ 𝒟𝜎 ∩ ((𝑎𝛼 ∖ 𝑧) × (𝑎𝛽 ∖ 𝑧)).

(2) By (𝑖′, 𝑗′) ∈ 𝒟𝜎 ∩ ((𝑎𝛼 ∖ 𝑧) × (𝑎𝛽 ∖ 𝑧)), we have

m𝜎 ≥ ℎ(𝜎(𝑖′), 𝜎(𝑗′)) ≥ min(ℎ[(𝑎𝛼 ∖ 𝑧) × (𝑎𝛽 ∖ 𝑧)]) = min(ℎ[𝑎× 𝑏]) > 𝜖.

(3) Note that since 𝛼, 𝛽 are distinct elements of Im(𝜎), we get that ∆𝜎 ≥ ∆(𝛼, 𝛽). By
Clause (a) above, 𝛼 = 𝑎𝛼(𝜒′) and 𝛽 = 𝑎𝛽(𝜒′), and so, by Clause (c) above, ∆(𝛼, 𝛽) > 𝜖. In
particular, ∆𝜎 > 𝜖. So, by Clause (b) above, we should restrict our attention to the set

ℐ := {(𝑖, 𝑗) ∈ 𝜒× 𝜒 | ∆(𝑎𝛼(𝑖), 𝑎𝛽(𝑗)) = ∆𝜎}.

Let (𝑖, 𝑗) denote an arbitrary pair from ℐ. By 𝜖 < ∆𝜎 <∞, we have 𝜖 < ∆(𝑎𝛼(𝑖), 𝑎𝛽(𝑗)) <
∞. By Clause (c) above, 𝑓𝑎𝛼(𝑗) � (𝜖 + 1) = 𝑡(𝑗) = 𝑓𝑎𝛽(𝑗) � (𝜖 + 1), and so if 𝑖 ̸= 𝑗, then
∆(𝑎𝛼(𝑖), 𝑎𝛼(𝑗)) > 𝜖, contradicting Clause (b) above. It follows that if (𝑖, 𝑗) ∈ ℐ, then 𝑖 = 𝑗.
Let (𝑖, 𝑖) ∈ ℐ be arbitrary. By ∆(𝑎𝛼(𝑖), 𝑎𝛽(𝑖)) = ∆𝜎 < ∞, we get from Clause (d) above
that 𝑖 ≥ otp(𝑧), and then the choice of 𝛼, 𝛽, entails that 𝑑(𝑎𝛼(𝑖), 𝑎𝛽(𝑖)) = 𝜓−1(𝑛*, 𝜏 *, 𝛾*).
Altogether, 𝑑0(𝜎) = 𝑛*, 𝑑1(𝜎) = 𝜏 * and 𝑑2(𝜎) = 𝛾*. �

Let 𝛼, 𝛽 be given by the preceding claim. Suppose that we are given 𝜂 ∈ 𝑢𝛼 and 𝜌 ∈ 𝑣𝛽,
and let us show that 𝑐0(𝜂

⌢𝜌) = 𝜂, 𝑐1(𝜂
⌢𝜌) = 𝛼, and 𝑐2(𝜂

⌢𝜌) = 𝛽. Indeed, the fact that
𝑐3(𝜂

⌢𝜌) equals 𝛾* already follows from the preceding claim. Write 𝜎 := 𝜂⌢𝜌.

Claim 2.6.2. If (𝑖, 𝑗) ∈ 𝒫𝜎, then:

(1) 𝜎(𝑖) ∈ 𝑎𝛼 ∖ 𝑧, and 𝜎(𝑗) ∈ 𝑎𝛽 ∖ 𝑧;
(2) 𝑗 ≥ ℓ(𝜂) and 𝑖 < ℓ(𝜂).
(3) (𝑖, ℓ(𝜂) + 𝑛*) ∈ 𝒫𝜎.

Proof. (1) By 𝜎 = 𝜂⌢𝜌, we have {𝜎(𝑖), 𝜎(𝑗)} ⊆ Im(𝜂) ∪ Im(𝜌) ⊆ 𝑎𝛼 ∪ 𝑎𝛽.
If {𝜎(𝑖), 𝜎(𝑗)} ⊆ 𝑎𝛼, then ℎ(𝜎(𝑖), 𝜎(𝑗)) ≤ sup(ℎ“[𝑎𝛼]2) ≤ 𝜖. Likewise, if {𝜎(𝑖), 𝜎(𝑗)} ⊆ 𝑎𝛽,

then ℎ(𝜎(𝑖), 𝜎(𝑗)) ≤ sup(ℎ“[𝑎𝛽]2) ≤ 𝜖. However, ℎ(𝜎(𝑖), 𝜎(𝑗)) = m𝜎 > 𝜖. So, by 𝑖 < 𝑗, we
get that 𝜎(𝑖) ∈ 𝑎𝛼 and 𝜎(𝑗) ∈ 𝑎𝛽. Moreover, if 𝜎(𝑗) ∈ 𝑧, then {𝜎(𝑖), 𝜎(𝑗)} ⊆ 𝑎𝛼 ∪ 𝑧 = 𝑎𝛼,
contradicting the fact that sup(ℎ“[𝑎𝛼]2) < m𝜎. So, 𝜎(𝑗) ∈ 𝑎𝛽 ∖ 𝑧. Likewise, 𝜎(𝑖) ∈ 𝑎𝛼 ∖ 𝑧.

(2) By 𝜎(𝑗) ∈ 𝑎𝛽 ∖ 𝑧 = 𝑎𝛽 ∖ 𝑎𝛼 ⊆ 𝑎𝛽 ∖ Im(𝜂), we infer that 𝑗 ≥ ℓ(𝜂). Likewise, 𝜎(𝑖) ∈
𝑎𝛼 ∖ 𝑧 ⊆ 𝑎𝛼 ∖ Im(𝜌) and 𝑖 < ℓ(𝜂).

(3) Write 𝑗* := ℓ(𝜂) + 𝑛*. Then, 𝑖 < ℓ(𝜂) ≤ 𝑗*. By Clauses (e) and (d) above, we have
𝜎[ℓ(𝜂) + 𝑛*] ⊆ 𝑎𝛼 ∪ 𝑧 ⊆ 𝜎(𝑗*). Consequently, (𝑖, 𝑗*) ∈ 𝒟𝛼.

Towards a contradiction, suppose that ℎ(𝜎(𝑖), 𝜎(𝑗)) > ℎ(𝜎(𝑖), 𝜎(𝑗*)). In particular, 𝜎(𝑗) ̸=
𝜎(𝑗*).
I If 𝜎(𝑗) < 𝜎(𝑗*), then by (𝑖, 𝑗) ∈ 𝒟𝜎, it cannot be that 𝑗* < 𝑗. Then, by the preceding

item, we have ℓ(𝜂) ≤ 𝑗 < 𝑗*. Consequently, there exists 𝑛 < 𝑛* such that 𝑗 = ℓ(𝜂) + 𝑛, and
𝜎(𝑗) = 𝜌𝛽(𝑛). By 𝜎(𝑗) ∈ 𝑎𝛽 ∖ 𝑧 and Clause (d) above, 𝜎(𝑗) > sup(𝑧). So 𝑛 contradicts the
minimality of 𝑛*.
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I If 𝜎(𝑗*) < 𝜎(𝑗), then by (𝜎(𝑖), 𝜎(𝑗*)) ∈ 𝑎𝛼 × (𝑎𝛽 ∖ 𝑧) and Clause (d) above, we have
𝜎(𝑖) < 𝜎(𝑗*) < 𝜎(𝑗). By transitivity of ℎ, then,

ℎ(𝜎(𝑖), 𝜎(𝑗)) ≤ max{ℎ(𝜎(𝑖), 𝜎(𝑗*)), ℎ(𝜎(𝑗*), 𝜎(𝑗))}.
As we assume that ℎ(𝜎(𝑖), 𝜎(𝑗)) > ℎ(𝜎(𝑖), 𝜎(𝑗*)), we must conclude that ℎ(𝜎(𝑖), 𝜎(𝑗)) ≤

ℎ(𝜎(𝑗*), 𝜎(𝑗)) ≤ sup(ℎ“[𝑎𝛽]2) ≤ 𝜖 < m𝜎, contradicting the fact that (𝑖, 𝑗) ∈ 𝒫𝜎. �

By Claim 2.6.2, Clauses (1) and (2), 𝜎(𝑗𝜎) > sup(𝑧) and 𝑗𝜎 ≥ ℓ(𝜂). Then, by minimality
of 𝑛* and Claim 2.6.2(3), we have 𝑗𝜎 = ℓ(𝜂) + 𝑛*. So, by Claim 2.6.1(3):

𝑐0(𝜎) = 𝜎 � (𝑗𝜎 − 𝑑0(𝜎)) = (𝜂⌢𝜌) � ((ℓ(𝜂) + 𝑛*) − 𝑛*) = 𝜂.

Finally, 𝑐1(𝜎) = 𝜎(𝑔𝑑1(𝜎)(𝑐0(𝜎)) = (𝜂⌢𝜌)(𝑔𝜏*(𝜂)) = 𝛼, by Claim 2.6.1(3) and Clause (f)
above. Likewise, 𝑐2(𝜎) = 𝜌((𝑔𝑑1(𝜎)(𝜌)) = 𝛽. �

Note that the above 𝑐 is in particular a witness to Pℓ6(𝜇
+, 𝜇+, 𝜇), where:

Definition 2.7. Pℓ6(𝜅, 𝜃, 𝜒) asserts the existence of a coloring 𝑐 : <𝜔𝜅 → 𝜔 × 𝜅 × 𝜅 × 𝜃,
satisfying the following. For every club 𝐸 in 𝜅, every regressive map 𝜙 : 𝐸 → 𝜃, and every
sequence ⟨(𝑢𝛼, 𝑣𝛼, 𝜌𝛼) | 𝛼 ∈ 𝐸⟩, that satisfies

(1) 𝑢𝛼 and 𝑣𝛼 are nonempty elements of [<𝜔𝜅]<𝜒;
(2) 𝛼 ∈ Im(𝜂) for all 𝜂 ∈ 𝑢𝛼;
(3) 𝜌𝛼

⌢⟨𝛼⟩ ⊑ 𝜌 for all 𝜌 ∈ 𝑣𝛼,

there exist 𝛼 < 𝛽 in 𝐸 with 𝜙(𝛼) = 𝜙(𝛽) such that 𝑐(𝜂⌢𝜌) = (ℓ(𝜂), 𝛼, 𝛽, 𝜙(𝛽)) for all 𝜂 ∈ 𝑢𝛼
and 𝜌 ∈ 𝑣𝛽.

Why is this useful? As the construction of 𝑐 anyway assumed 𝜇<𝜇 = 𝜇, we have in this
case [1] a sequence ⟨𝑔𝑖 : <𝜔𝜇+ → 𝜇 | 𝑖 < 𝜇⟩ such that for every 𝑥 ∈ [<𝜔𝜇+]<𝜇 and 𝑔 : 𝑥 → 𝜇,
one can find 𝑖 < 𝜇 with 𝑔 ⊆ 𝑔𝑖. So, we can encode into 𝜙(𝛽) the value 𝑖 for which 𝑔𝑖 � 𝑢𝛽 ∪𝑣𝛽
is as desired. As 𝜙(𝛼) = 𝜙(𝛽), this would, in addition, entail that 𝑔𝑖 � 𝑢𝛼 ∪ 𝑣𝛼 is as desired.

On top of that, we can use 𝛽 to stretch the function 𝑔𝑖 into a function 𝑔𝛽𝑖 with range 𝜔 × 𝛽.

So, yielding 𝑔𝛽𝑖 (𝜂) = (ℓ(𝜂), 𝛾*) is simply a special case.
Now, a second look at the arguments of Theorem 2.3 makes it clear that Pℓ6(𝜇

+, 𝜔, 𝜇)
holds for every regular accessible 𝜇. Altogether:

Corollary 2.8. Pℓ6(𝜇
+, 𝜔, 𝜇) holds for every regular cardinal 𝜇.

Remark. For an application of Pℓ6(𝜇
+, 𝜔, 𝜇), see [9].

Note that the arguments of Theorem 2.3 can be used to obtain additional results. For
instance, Pℓ6(𝜆, 𝜃, cf(𝜆)) holds for every prevalent singular cardinal 𝜆, and 𝜃 < 𝜆.5 Likewise,
Pℓ6(𝜅, 𝜃, 𝜒) holds for every strongly inaccessible cardinal 𝜅, and every 𝜃, 𝜒 < 𝜅.

3. The coloring principle Pr1

In this section, Pr1 colorings are derived from Pℓ6. Following the advice of one of the
referees, we say a few words about the involved ingredients.

Suppose that 𝜃 is a regular uncountable cardinal. For every pair of ordinals 𝛼 < 𝛽
below 𝜃, one attaches a finite subset 𝑇 (𝛼, 𝛽) of the interval [𝛼, 𝛽]. Specifically, 𝑇 (𝛼, 𝛽) is
the upper trace of the walk from 𝛽 down to 𝛼. Given a nonreflecting subset Γ of 𝜃, one

5The notion of a prevalent cardinal was coined in [7].
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can define the upper trace in such a way that for every unbounded subset 𝐴 of 𝜃, the set
Γ ∖

⋃︀
{𝑇 (𝛼, 𝛽) | (𝛼, 𝛽) ∈ [𝐴]2} will be nonstationary. In particular, if Γ is stationary, and

𝜓 : Γ → 𝜃 is a partition of Γ into 𝜃 many stationary set, then for every unbounded subset
𝐴 of 𝜃, and every desired color 𝛾* < 𝜃, there exists 𝛼 < 𝛽 in 𝐴 and 𝜖 ∈ 𝑇 (𝛼, 𝛽) such that
𝜓(𝜖) = 𝛾*.

This suggests that a strong coloring 𝑐 : [𝜃]2 → 𝜃 may be obtained by letting 𝑐(𝛼, 𝛽) =
𝜓(𝜖(𝛼, 𝛽)) where 𝜖(𝛼, 𝛽) is a cleverly chosen element of 𝑇 (𝛼, 𝛽). Since 𝑇 (𝛼, 𝛽) is a fi-
nite set, any choice function 𝜖 in

∏︀
𝛼<𝛽<𝜃 𝑇 (𝛼, 𝛽) may be identified with a function 𝑜 in∏︀

𝛼<𝛽<𝜃 |𝑇 (𝛼, 𝛽)|. So, in summary, our challenge in this setup, is to come up with a useful

oscillation function of the form 𝑜 : [𝜃]2 → 𝜔. In [20], where the method of walks on ordinals
was introduced, Todorčević obtained strong colorings by appealing to the so-called oscilla-
tion of the upper trace. In a recent paper [10], Todorčević and the author obtained strong
colorings by appealing to the so-called oscillation of the lower trace. In many of Shelah’s
paper that were mentioned in the introduction, strong colorings are obtained by exhibiting
very complicated oscillation functions. In this paper, an oscillation function will be derived
from Pℓ6 by feeding it with a projected version of the upper trace.

Theorem 3.1. Suppose that Pℓ6(𝜅, 𝜒) holds with 𝜒 ≤ 𝜅. Suppose that 𝜃 > 𝜅 is a regular
cardinal, and there exists a nonreflecting stationary subset of 𝐸𝜃

≥𝜒. Then Pr1(𝜃, 𝜃, 𝜃, 𝜒) holds.

Proof. Compared to previous works by Shelah [17, S4],[18, S1] and Todorčević [21, S8], the
new feature here is the ability to take advantage of a (𝜅, 𝜒)-oscillation oracle, even when the
nonreflection concentrates at points of cofinality < 𝜅.

The coloring. Let Γ ⊆ 𝐸𝜃
≥𝜒 be stationary and nonreflecting. Let ⟨𝐶𝛼 | 𝛼 < 𝜃⟩ be a sequence

such that 𝐶𝛼+1 = {𝛼} for every 𝛼 < 𝜃, and such that for every limit 𝛼 < 𝜃, 𝐶𝛼 is a club in
𝛼 with Γ ∩ acc(𝐶𝛼) = ∅. Fix a surjection ℎ : 𝜃 → 𝜅 such that 𝐻𝑖 := {𝛼 ∈ Γ | ℎ(𝛼) = 𝑖} is
stationary for all 𝑖 < 𝜅. For all 𝛼 < 𝛽 < 𝜃, define:

∙ Tr(𝛼, 𝛽) ∈ 𝜔𝜃, by recursively letting for all 𝑛 < 𝜔:

Tr(𝛼, 𝛽)(𝑛) :=

⎧⎪⎨⎪⎩
𝛽, 𝑛 = 0

min(𝐶Tr(𝛼,𝛽)(𝑛−1) ∖ 𝛼), 𝑛 > 0 & Tr(𝛼, 𝛽)(𝑛− 1) > 𝛼

𝛼, otherwise

∙ 𝜌2(𝛼, 𝛽) := min{𝑛 < 𝜔 | Tr(𝛼, 𝛽)(𝑛) = 𝛼};6

∙ trh(𝛼, 𝛽) := ⟨ℎ(Tr(𝛼, 𝛽)(𝑖)) | 𝑖 < 𝜌2(𝛼, 𝛽)⟩;
∙ 𝜆(𝛼, 𝛽) := max{sup(𝐶Tr(𝛼,𝛽)(𝑖) ∩ 𝛼) | 𝑖 < 𝜌2(𝛼, 𝛽)}.

We remind the reader of two fundamental facts:

Claim 3.1.1. If 𝛿 ∈ Γ and 𝛿 < 𝛽 < 𝜃, then 𝜆(𝛿, 𝛽) < 𝛿.

Proof. If 𝛿 ≥ 𝜆(𝛿, 𝛽), then by definition, there exists 𝑖 < 𝜌2(𝛿, 𝛽) such that sup(𝐶Tr(𝛿,𝛽)(𝑖)∩𝛿) =
𝛿. In particular, there exists an ordinal 𝛼 with 𝛿 < 𝛼 < 𝛽 such that sup(𝐶𝛼 ∩ 𝛿) = 𝛿,
contradicting the fact that acc(𝐶𝛼) ∩ Γ = ∅ for every 𝛼 < 𝜃. �

6The standard notation here is 𝜌2(𝛼, 𝛽). This time, we decided to use the notation 𝜌2 to avoid confusion
with the 𝜌𝑖’s that are given by the definition of Pℓ6.
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Claim 3.1.2. If 𝜆(𝛽, 𝛾) < 𝛼 < 𝛽 < 𝛾 < 𝜃, then

trh(𝛼, 𝛾) = trh(𝛽, 𝛾)⌢ trh(𝛼, 𝛽).

Proof. Clearly, Tr(𝛼, 𝛾)(0) = 𝛾 = Tr(𝛽, 𝛾)(0). Next, if 𝑖 < 𝜌2(𝛽, 𝛾) and Tr(𝛼, 𝛾)(𝑖) =
Tr(𝛽, 𝛾)(𝑖), then by 𝛽 > 𝛼 > 𝜆(𝛽, 𝛾) ≥ sup(𝐶Tr(𝛽,𝛾)(𝑖) ∩ 𝛽), we get that

min(𝐶trh(𝛼,𝛾)(𝑖) ∖ 𝛼) = min(𝐶trh(𝛽,𝛾)(𝑖) ∖ 𝛼) = min(𝐶trh(𝛽,𝛾)(𝑖) ∖ 𝛽),

and hence Tr(𝛼, 𝛾)(𝑖+1) = Tr(𝛽, 𝛾)(𝑖+1). So Tr(𝛽, 𝛾) � 𝜌2(𝛽, 𝛾) ⊑ Tr(𝛼, 𝛾), and Tr(𝛼, 𝛾)(𝜌2(𝛽, 𝛾)) =
𝛽, let alone trh(𝛼, 𝛾) = trh(𝛽, 𝛾)⌢ trh(𝛼, 𝛽). �

Let 𝑑 witness Pℓ6(𝜅, 𝜒). Fix a surjection 𝜓 : 𝜃 → 𝜃 such that Γ𝛾 := {𝛿 ∈ Γ | 𝜓(𝛿) = 𝛾} is
stationary for every 𝛾 < 𝜃. Define 𝑐 : [𝜃]2 → 𝜃 by stipulating

𝑐(𝛼, 𝛽) := 𝜓(Tr(𝛼, 𝛽)(𝑑(trh(𝛼, 𝛽)))).

Let us describe the definition of 𝑐 in simple words: we first walk from 𝛽 down to 𝛼,
producing some sequence 𝜎 in <𝜔𝜃. We then project it down using ℎ to a sequence �̄� in <𝜔𝜅.
We feed �̄� to 𝑑, and get some natural number 𝑛. By definition of Pℓ6, we should think of
𝑛 as a number < ℓ(�̄�). As 𝑛 < ℓ(�̄�) = 𝜌2(𝛼, 𝛽), it then makes sense to look at the 𝑛𝑡ℎ-step
of the walk from 𝛽 down to 𝛼 and ask about the color it was assigned by 𝜓. Indeed, this is
what 𝑐 does.

Verification. Suppose that 𝒜 ⊆ [𝜃]<𝜒 of size 𝜃, consists of pairwise disjoint sets, and 𝛾* < 𝜃
is a prescribed color. Let ⟨𝑥𝛿 | 𝛿 < 𝜃⟩ be an injective enumeration of some subfamily of 𝒜,
such that 𝛿 < min(𝑥𝛿) for all 𝛿 < 𝜃. Define a function 𝑔 : Γ → 𝜃 by letting

𝑔(𝛿) := sup{𝜆(𝛿, 𝛽) | 𝛽 ∈ 𝑥𝛿}.
By Claim 3.1.1 and |𝑥𝛿| < cf(𝛿) for all 𝛿 ∈ Γ, 𝑔 is regressive, so for all 𝑖 < 𝜅, let us pick a

stationary subset Σ𝑖 ⊆ 𝐻𝑖 such that 𝑔 � Σ𝑖 is constant.
Put 𝐷 := {𝛿 < 𝜃 | ∀𝛼 < 𝛿(sup(𝑥𝛼) < 𝛿)}. Denote ∆𝑗 := 𝐻𝑗 ∩ 𝐷, and fix 𝜖 ∈ Γ ∩⋂︀
𝑗<𝜅 acc+(∆𝑗) above 𝜁 := sup(𝑔[

⋃︀
𝑖<𝜅 Σ𝑖]) such that 𝜓(𝜖) = 𝛾*. For all 𝑖 < 𝜅, let

𝛽𝑖 := min(Σ𝑖 ∖ 𝜖+ 1).

I If cf(𝜖) ≥ 𝜅, let 𝜙 : 𝜅→ {0} be the constant function.
Then, for each 𝑗 < 𝜅, by 𝜖 ∈ Γ ∩ acc+(∆𝑗) and Claim 3.1.1, pick 𝛿𝑗 ∈ ∆𝑗 such that

∙ 𝜖 > 𝛿𝑗 > max {sup{𝜆(𝜖, 𝛽) | 𝛽 ∈ 𝑥𝛽𝑖
, 𝑖 < 𝑗}, 𝜁}, and put

∙ 𝛼𝑗 := max{sup{𝜆(𝜖, 𝛽) | 𝛽 ∈ 𝑥𝛽𝑖
, 𝑖 < 𝑗}, 𝜁, 𝜆(𝛿𝑗, 𝜖)} + 1.

I If 𝜒 ≤ cf(𝜖) < 𝜅, let ⟨𝜖𝜄 | 𝜄 < cf(𝜖)⟩ be an increasing sequence of ordinals converging to
𝜖. Define 𝜙 : 𝜅→ cf(𝜖) by stipulating

𝜙(𝑖) := min{𝜄 < cf(𝜖) | sup{𝜆(𝜖, 𝛽) | 𝛽 ∈ 𝑥𝛽𝑖
} < 𝜖𝜄}.

Then, for each 𝑗 < 𝜅, by 𝜖 ∈ acc+(∆𝑗), pick 𝛿𝑗 ∈ ∆𝑗 such that

∙ 𝜖 > 𝛿𝑗 > max
{︀
𝜖𝜙(𝑗), 𝜁

}︀
, and put

∙ 𝛼𝑗 := max{𝜖𝜙(𝑗), 𝜁, 𝜆(𝛿𝑗, 𝜖)} + 1.

Write 𝑎𝑗 := 𝑥𝛼𝑗
and 𝑏𝑖 := 𝑥𝛽𝑖

.

Claim 3.1.3. For every 𝑖 < 𝑗 < 𝜅 and every 𝛼 ∈ 𝑎𝑗, 𝛽 ∈ 𝑏𝑖, we have:

(a) trh(𝜖, 𝛽) = trh(𝛽𝑖, 𝛽)⌢ trh(𝜖, 𝛽𝑖);
(b) trh(𝛼, 𝜖) = trh(𝛿𝑗, 𝜖)

⌢ trh(𝛼, 𝛿𝑗);
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(c) trh(𝛼, 𝛽) = trh(𝜖, 𝛽)⌢ trh(𝛼, 𝜖), provided that 𝜙(𝑖) = 𝜙(𝑗).

Proof. All clauses follow from Claim 3.1.2 and the following particular considerations.
(a) By 𝛽 ∈ 𝑏𝑖 = 𝑥𝛽𝑖

, we have 𝛽 > 𝛽𝑖 > 𝜖 > 𝜁 ≥ 𝑔(𝛽𝑖) ≥ 𝜆(𝛽𝑖, 𝛽).
(b) By 𝛿𝑗 ∈ Γ and Claim 3.1.1, the definition of 𝛼𝑗 makes it clear that 𝛿𝑗 > 𝛼𝑗 > 𝜆(𝛿𝑗, 𝜖).

By 𝛿𝑗 ∈ 𝐷, we have 𝛿𝑗 > sup(𝑥𝛼𝑗
). So, by 𝛼 ∈ 𝑎𝑗 = 𝑥𝛼𝑗

, we get 𝜖 > 𝛿𝑗 > 𝛼 > 𝛼𝑗 > 𝜆(𝛿𝑗, 𝜖).
(c) If cf(𝜖) ≥ 𝜅, then we have 𝛼𝑗 > sup{𝜆(𝜖, 𝛽′) | 𝛽′ ∈ 𝑥𝛽𝑖′

, 𝑖′ < 𝑗}. And so by 𝑖 < 𝑗,
𝛽 ∈ 𝑏𝑖 = 𝑥𝛽𝑖

and 𝛼 ∈ 𝑎𝑗 = 𝑥𝛼𝑗
, we have 𝛽 > 𝛽𝑖 > 𝜖 > 𝛿𝑗 > 𝛼 > 𝛼𝑗 > 𝜆(𝜖, 𝛽).

If cf(𝜖) < 𝜅, then by 𝜙(𝑖) = 𝜙(𝑗), we get 𝛼𝑗 > 𝜖𝜙(𝑗) = 𝜖𝜙(𝑖) > sup{𝜆(𝜖, 𝛽′) | 𝛽′ ∈ 𝑥𝛽𝑖
}. And

so by 𝛽 ∈ 𝑏𝑖 = 𝑥𝛽𝑖
and 𝛼 ∈ 𝑎𝑗 = 𝑥𝛼𝑗

, we have 𝛽 > 𝛽𝑖 > 𝜖 > 𝛿𝑗 > 𝛼 > 𝛼𝑗 > 𝜆(𝜖, 𝛽). �

For every 𝑖 < 𝜅, set 𝑢𝑖 := {trh(𝜖, 𝛽) | 𝛽 ∈ 𝑏𝑖} and 𝑣𝑖 := {trh(𝛼, 𝜖) | 𝛼 ∈ 𝑎𝑖}.

Claim 3.1.4. For every 𝑖 < 𝜅:

(1) 𝑖 ∈ Im(𝜂) for all 𝜂 ∈ 𝑢𝑖;
(2) there exists 𝜌𝑖 ∈ <𝜔𝜅 such that 𝜌𝑖

⌢⟨𝑖⟩ ⊑ 𝜌 for all 𝜌 ∈ 𝑣𝑖.

Proof. (1) By Claim 3.1.3(a), and the fact that 𝛽𝑖 ∈ Σ𝑖 ⊆ 𝐻𝑖.
(2) By Claim 3.1.3(b) and 𝛿𝑖 ∈ ∆𝑖 ⊆ 𝐻𝑖, we have trh(𝛿𝑖, 𝜖)

⌢⟨𝑖⟩ ⊑ 𝜌 for all 𝜌 ∈ 𝑣𝑖. �

By the choice of 𝑑, then, there exist 𝑖 < 𝑗 < 𝜅 with 𝜙(𝑖) = 𝜙(𝑗) such that 𝑑(𝜂⌢𝜌) = ℓ(𝜂)
for all 𝜂 ∈ 𝑢𝑖 and 𝜌 ∈ 𝑣𝑗. To see that 𝑐[𝑎𝑗 × 𝑏𝑖] = {𝛾*}, fix an arbitrary 𝛼 ∈ 𝑎𝑗 and 𝛽 ∈ 𝑏𝑖.
Write 𝜂 := trh(𝜖, 𝛽) and 𝜌 := trh(𝛼, 𝜖). Then:

∙ trh(𝛼, 𝛽) = 𝜂⌢𝜌, by Claim 3.1.3(c);
∙ 𝑑(trh(𝛼, 𝛽)) = ℓ(𝜂) = ℓ(trh(𝜖, 𝛽)) = 𝜌2(𝜖, 𝛽);
∙ Tr(𝛼, 𝛽)(𝑑(trh(𝛼, 𝛽))) = Tr(𝛼, 𝛽)(𝜌2(𝜖, 𝛽)) = 𝜖, by Claim 3.1.3(c).

So, 𝑐(𝛼, 𝛽) = 𝜓(Tr(𝛼, 𝛽)(𝑑(trh(𝛼, 𝛽)))) = 𝜓(𝜖) = 𝛾*, as desired. �

Corollary 3.2. If 𝜆 = cf(𝜆) > 𝜅+, and 𝐸𝜆
≥𝜅 admits a nonreflecting stationary set, then

Pr1(𝜆, 𝜆, 𝜆, 𝜒) holds for every regular cardinal 𝜒 ≤ 𝜅.

Proof. Suppose that 𝜒 ≤ 𝜅 is regular. Then, by Theorem 2.2, Pℓ6(𝜒
+, 𝜒) holds. As 𝜆 > 𝜒+,

and 𝐸𝜆
≥𝜒 admits a nonreflecting stationary set, we get Pr1(𝜆, 𝜆, 𝜆, 𝜒) as a consequence of

Theorem 3.1. �
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[2] P. Erdős, A. Hajnal, and R. Rado. Partition relations for cardinal numbers. Acta Math. Acad. Sci.
Hungar., 16:93–196, 1965.

[3] D. H. Fremlin. Consequences of Martin’s axiom, volume 84 of Cambridge Tracts in Mathematics. Cam-
bridge University Press, Cambridge, 1984.

[4] Fred Galvin. Chain conditions and products. Fund. Math., 108(1):33–48, 1980.
[5] A. Hajnal and I. Juhász. A consequence of Martin’s axiom. Nederl. Akad. Wetensch. Proc. Ser. A

74=Indag. Math., 33:457–463, 1971.
[6] Kenneth Kunen. Set theory, volume 102 of Studies in Logic and the Foundations of Mathematics. North-

Holland Publishing Co., Amsterdam-New York, 1980. An introduction to independence proofs.
[7] Assaf Rinot. On topological spaces of singular density and minimal weight. Topology Appl., 155(3):135–

140, 2007.
[8] Assaf Rinot. Transforming rectangles into squares, with applications to strong colorings. Adv. Math.,

231(2):1085–1099, 2012.
13



[9] Assaf Rinot. Chain conditions of products, and weakly compact cardinals. B. Symbolic Logic, pages
1–23, 2014.
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