Nets of spaces having singular density

Workshop on Set Theory and its Applications

19-Feb-07, Rehovot

Assaf Rinot Tel-Aviv University

http://www.tau.ac.il/~rinot

Definitions

Suppose $\langle X, O \rangle$ is a topological space.

Weight: $w(X) := \min\{|\mathcal{B}| : \mathcal{B} \subseteq O \text{ is a base }\} + \aleph_0.$

Density: $d(X) := \min\{|D| : D \subseteq X \text{ is dense }\} + \aleph_0.$

Hereditary compactness degree:

 $hC(X) := \min\{\mu : \text{ any open cover of any } Y \subseteq X \text{ contains a subcover of size } < \mu\} + \aleph_0.$

The effect of singular cardinals on usual mathematics is unusual

Theorem (Hajnal-Juhász, 1969). Suppose λ is a singular strong-limit cardinal. Any Hausdorff space of cardinality λ contains a discrete subspace of size λ .

In particular, if X is Hausdorff and $d(X) = \lambda$ is SSL, then $hC(X) > \lambda$.

History

Theorem (Juhász-Shelah, 2002). For any relevant ordinal α , the following is consistent:

 $\exists X \text{ regular, } hC(X) = \aleph_1, \ d(X) = \aleph_\alpha = cf(\aleph_\alpha).$

Theorem (Moore, 2004). The following is a consequence of ZFC:

$$\exists X \text{ regular, } hC(X) = \aleph_1, \ d(X) = \aleph_1.$$

Question (Juhász). Is the following consistent:

$$\exists X \text{ regular, } hC(X) = \aleph_1, \ d(X) = \aleph_{\aleph_1} ??$$

Theorem (Gitik-Rinot, 2005).

If $\exists X$ arbitrary, $hC(X) = \aleph_1$, $d(X) = w(X) = \aleph_{\aleph_1}$,

then there exists an inner model with a measurable cardinal.

Theorem (Juhász-Shelah, 2007). For any ordinal α , the following is consistent:

 $\exists X \text{ regular, } hC(X) = \aleph_1, d(X) = \aleph_\alpha.$

Theorem (Rinot, 2007). In all currently known models of ZFC:

 $\neg \exists X \text{ arbitrary, } hC(X) = \aleph_1, \ d(X) = w(X) = \aleph_{\aleph_1}.$

Question (Juhász). Does the same follow from ZFC?

Prevalent Singular Cardinals Hypothesis

Definition. A singular cardinal λ is a *prevalent singular* cardinal iff there exists a family $\mathcal{A} \subseteq \mathcal{P}(\lambda)$ with $|\mathcal{A}| = \lambda$ and $\sup\{|A| : A \in \mathcal{A}\} < \lambda$ such that any $B \subseteq \lambda$ with $|B| < cf(\lambda)$ is contained in some $A \in \mathcal{A}$.

PSH states that any singular cardinal is a prevalent singular cardinal.

Prevalent Singular Cardinals Hypothesis

Fact 1. PSH is a consequence of GCH, PFA, and more.

Fact 2. PSH holds in all known models of set theory. It is unknown whether \neg PSH is consistent.

Probabilistic view: The following event occurs a.e.: There exists a cardinal κ such that any singular $\lambda > \kappa$ is a prevalent singular cardinal.

<u>Reasoning</u>: the complementary event implies the existence of an inner model with a *class* of measurables.

Restricted net weight

Definition. For a space $\langle X, O \rangle$ and a cardinal θ , let:

$$nw_{\theta}(X) := \min\left\{ |\mathcal{N}| : \mathcal{N} \subseteq \mathcal{P}(X), O \subseteq \{ \bigcup \mathcal{U} \mid \mathcal{U} \in [\mathcal{N}]^{<\theta} \} \right\}$$

Main Theorem. (PSH) If $\langle X, O \rangle$ is an arbitrary space (no separation axioms assumed) and $d(X) = \lambda$ is a singular cardinal, then $nw_{cf(\lambda)}(X) > \lambda$. Proof of the main theorem

:

:

:

•

:

٠

Corollary

Theorem. In all currently known models of ZFC, if λ is singular and $\langle X, O \rangle$ is an arbitrary topological space with $d(X) = w(X) = \lambda$, then $hC(X) > cf(\lambda)$.

Thank you!