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Ramsey’s theorem

The square-bracket relation

Let λ→ [λ]2κ denote the assertion:
For every function f : [λ]2 → κ, there exists a subset H ⊆ λ
of size λ such that f “[H]2 6= κ.

Theorem (Ramsey, 1929)

ω → [ω]22 holds.

I.e., if we partition the set of (unordered) pairs of natural numbers
into two sets A0,A1, then there exists an infinite set H and an
index i < 2, for which the square satisfies [H]2 ⊆ Ai .
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Ramsey’s theorem (Cont.)

Theorem (Ramsey, 1929)

ω → [ω]22.

Ramsey’s theorem is very pleasing. Unfortunately, it does not
generalize to higher cardinals.

Theorem (Sierpiński, 1933)

ω1 6→ [ω1]22.

I.e., there exists a partition [ω1]2 = A0 ] A1, such that for every
uncountable H ⊆ ω1, we have [H]2 ∩ Ai 6= ∅ for both i < 2.
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Generalizing Sierpiński

Theorem (Sierpiński, 1933)

ω1 6→ [ω1]22.

Sierpiński theorem handles partitions of the form [ω1]2 = A0 ] A1.
How about partitions of the form [ω1]2 =

⊎
i<ω1

Ai?
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Ai?

Theorem (Erdös-Hajnal-Rado, 1965)

CH entails ω1 6→ [ω1]2ω1
.
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Generalizing Sierpiński
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Theorem (Todorčević, 1987)
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Generalizing Sierpiński

Theorem (Sierpiński, 1933)

ω1 6→ [ω1]22.

Theorem (Todorčević, 1987)

ω1 6→ [ω1]2ω1
.

I A function witnessing the failure of the square bracket relation is
considered as a strong coloring.
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Shelah’s study of strong colorings
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The rectangular square-bracket relation

Negative square-bracket relation

Let λ 6→ [λ]2κ denote the assertion:
There exists a function f : [λ]2 → κ, such that for every subset
X ⊆ λ of size λ, we have f “[X ]2 = κ.

Negative rectangular square-bracket relation

Let λ 6→ [λ;λ]2κ denote the assertion:
There exists a function f : [λ]2 → κ, such that for every subsets
X ,Y of λ, each of size λ, we have f [X ~ Y ] = κ.
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The rectangular square-bracket relation (Cont.)

Theorem (Erdös-Hajnal-Rado, 1965)

CH entails ω1 6→ [ω1]2ω1
.

Theorem (Todorčević, 1987)

ω1 6→ [ω1]2ω1
holds in ZFC.

Theorem (Moore, 2006)

ω1 6→ [ω1;ω1]2ω1
holds in ZFC.
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Main result: comparing squares with rectangles

Theorem
TFAE for all cardinals λ, κ:

I λ+ 6→ [λ+]2κ
I λ+ 6→ [λ+;λ+]2κ

The above theorem was the missing link to the following corollary.

Corollary (Eisworth+Shelah+R.)

TFAE for every uncountable cardinal λ:

I λ+ 6→ [λ+]2λ+

I Pr0(λ+, λ+, ω)

For the definition of Pr0, see appendix.
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Surprise, Surprise!!

10 / 20



Main result in two parts

Theorem
TFAE for all cardinals λ, κ:

I λ+ 6→ [λ+]2κ
I λ+ 6→ [λ+;λ+]2κ

The theorem will follow from the following two ZFC results:

1. if λ = cf(λ), then λ+ 6→ [λ+;λ+]2λ+ holds;

2. if λ > cf(λ), then there exists a function rts : [λ+]2 → [λ+]2

such that for every cofinal subsets X ,Y of λ+, there exists a
cofinal subset Z ⊆ λ+ such that rts[X ~ Y ] ⊇ Z ~ Z .
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Successors of regulars
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Successors of regulars — in ZFC

Let λ denote a regular cardinal. Then:

1. (Todorčević, 1987) λ+ 6→ [λ+]2λ+ [Partitioning pairs of countable ordinals]

2. (Shelah, 1987) λ+ 6→ [λ+;λ+]2λ+ , if λ > 2ℵ0 [Sh:280]

3. (Shelah, 1991) λ+ 6→ [λ+;λ+]2λ+ , if λ > ℵ1 [Sh:327]

4. (Shelah, 1996) λ+ 6→ [λ+;λ+]2λ+ , if λ = ℵ1 [Sh:572]

5. (Moore, 2006) λ+ 6→ [λ+;λ+]2λ+ , if λ = ℵ0 [A solution to the L space

problem]

Corollary (Shelah+Moore)

λ+ 6→ [λ+;λ+]2λ+ holds for every regular cardinal λ.

Remark
In a recent joint work with Todorčević, we found a uniform proof
of the above 3 + 4 + 5.
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Successors of singulars
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Successor of singulars — in ZFC

Theorem (Shelah, 1990’s)

λ+ 6→ [λ+;λ+]2cf(λ) holds for every singular cardinal λ.

Theorem (Shelah, 1990’s)

If λ is a singular cardinal of uncountable cofinality, then Eλ+

cf(λ)
carries a club-guessing sequence of a very strong form.

Theorem (Eisworth, 2010)

If λ is a singular cardinal of countable cofinality, then Eλ+
ω1

carries a
club-guessing matrix of a very strong form.

Still Open

Whether λ+ 6→ [λ+]2λ+ hold for all singular λ, in ZFC.
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Transforming Rectangles into Squares — in ZFC

Main technical result
For every singular cardinal λ, there exists a function
rts : [λ+]2 → [λ+]2 such that for every cofinal subsets X ,Y of λ+,
there exists a cofinal subset Z ⊆ λ+ such that rts[X ~Y ] ⊇ Z ~Z .

Remark: our proof builds heavily on previous arguments of Shelah,
Todorčević, and most notably — Eisworth.

The definition of rts

I Fix a matrix of local clubs 〈C i
α | α < λ+, i < cf(λ)〉 that

incorporates a club-guessing sequence/matrix.

I Adapt Shelah’s proof of λ+ 6→ [λ+;λ+]2cf(λ), to get a function

f : [λ+]2 → <ω cf(λ)× <ω cf(λ) with strong properties.

I Given α < β < λ+, consider (σ, η) = f (α, β);

I Let β0 := β, and βn+1 := min(C
σ(n)
βn
\ α) for all n ∈ dom(σ);

16 / 20



Transforming Rectangles into Squares — in ZFC

Main technical result
For every singular cardinal λ, there exists a function
rts : [λ+]2 → [λ+]2 such that for every cofinal subsets X ,Y of λ+,
there exists a cofinal subset Z ⊆ λ+ such that rts[X ~Y ] ⊇ Z ~Z .

Remark: our proof builds heavily on previous arguments of Shelah,
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Transforming Rectangles into Squares (Cont.)

The definition of rts

I Fix a matrix of local clubs 〈C i
α | α < λ+, i < cf(λ)〉 that

incorporates a club-guessing sequence/matrix;

I Fix a function f : [λ+]2 → <ω cf(λ)× <ω cf(λ) with strong
coloring properties;

I Given α < β < λ+, consider (σ, η) = f (α, β);

I Let β0 := β, and βn+1 := min(C
σ(n)
βn
\ α) for all n ∈ dom(σ);

I Let γ := max{sup(C
σ(n)
βn
∩ α) | n ∈ dom(σ)};

I Let α0 := α, and αm+1 := min(C
η(m)
αm \ γ + 1) for m ∈ dom(η)

I Put rts(α, β) := (αdom(η), βdom(σ)).

The definition of rts is quite natural in this context, and so the
main point is to verify that the definition does the job.
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Why does rts work

I For every cofinal subset X ⊆ λ+, every ordinal δ < λ+, and
every type p in the language of the matrix-based walks, let
Xp(δ) := {α ∈ X | the pair (δ, α) realizes the type p};

I Denote SX
p := {δ < λ+ | sup(Xp(δ)) = sup(X )};

I Use the fact that the chosen matrix incorporates club guessing
to argue that for every cofinal subsets of λ+, X and Y , there
exists a type p, for which SX

p ∩ SY
p is stationary;

I Use the fact that f oscillates quite nicely on rectangles
X ~ Y , so that it can produce sequences (σ, η) with
successful guidelines on which columns of the matrix to advise
throughout the walks, and at which step of the walks to stop.
This insures that the type p gets realized quite frequently;

I Conclude that rts[X ~ Y ] ⊇ [SX
p ∩ SY

p ∩ C ]2 for the club C of
ordinals of the form M ∩ λ+, for elementary submodels
M ≺ Hχ of size λ, that contains all relevant objects.
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I Use the fact that f oscillates quite nicely on rectangles
X ~ Y , so that it can produce sequences (σ, η) with
successful guidelines on which columns of the matrix to advise
throughout the walks, and at which step of the walks to stop.
This insures that the type p gets realized quite frequently;

I Conclude that rts[X ~ Y ] ⊇ [SX
p ∩ SY

p ∩ C ]2 for the club C of
ordinals of the form M ∩ λ+, for elementary submodels
M ≺ Hχ of size λ, that contains all relevant objects.
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Thank you!

The slides of this talk may be found at the following address:
http://papers.assafrinot.com/?talk=cms2011
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Appendix

Definition (Shelah)

Pr0(λ, λ, ω) asserts the existence of a function f : [λ]2 → λ
satisfying the following.
For every n < ω, every g : n × n→ λ, and every collection
A ⊆ [λ]n of mutually disjoint sets, of size λ,
there exists some x , y ∈ A with max(x) < min(y) such that

f (x(i), y(j)) = g(i , j) for all i , j < n.
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