The extent of the failure of Ramsey's theorem at successor cardinals

CMS Winter Meeting
Toronto, Canada
11-December-2011

Assaf Rinot
University of Toronto Mississauga \&
The Fields Institute for Research in Mathematical Sciences

Introduction

Ramsey's theorem

The square-bracket relation
Let $\lambda \rightarrow[\lambda]_{\kappa}^{2}$ denote the assertion:
For every function $f:[\lambda]^{2} \rightarrow \kappa$, there exists a subset $H \subseteq \lambda$ of size λ such that $f^{\prime \prime}[H]^{2} \neq \kappa$.

Ramsey's theorem

The square-bracket relation
Let $\lambda \rightarrow[\lambda]_{\kappa}^{2}$ denote the assertion:
For every function $f:[\lambda]^{2} \rightarrow \kappa$, there exists a subset $H \subseteq \lambda$ of size λ such that $f^{\prime \prime}[H]^{2} \neq \kappa$.

Theorem (Ramsey, 1929)
$\omega \rightarrow[\omega]_{2}^{2}$ holds.
I.e., if we partition the set of (unordered) pairs of natural numbers into two sets A_{0}, A_{1}, then there exists an infinite set H and an index $i<2$, for which the square satisfies $[H]^{2} \subseteq A_{i}$.

Ramsey's theorem (Cont.)

Theorem (Ramsey, 1929) $\omega \rightarrow[\omega]_{2}^{2}$.

Ramsey's theorem is very pleasing. Unfortunately, it does not generalize to higher cardinals.

Ramsey's theorem (Cont.)

Theorem (Ramsey, 1929)
$\omega \rightarrow[\omega]_{2}^{2}$.
Ramsey's theorem is very pleasing. Unfortunately, it does not generalize to higher cardinals.

Theorem (Sierpiński, 1933) $\omega_{1} \nrightarrow\left[\omega_{1}\right]_{2}^{2}$.
I.e., there exists a partition $\left[\omega_{1}\right]^{2}=A_{0} \uplus A_{1}$, such that for every uncountable $H \subseteq \omega_{1}$, we have $[H]^{2} \cap A_{i} \neq \emptyset$ for both $i<2$.

Generalizing Sierpiński

Theorem (Sierpiński, 1933)
$\omega_{1} \nrightarrow\left[\omega_{1}\right]_{2}^{2}$.
Sierpiński theorem handles partitions of the form $\left[\omega_{1}\right]^{2}=A_{0} \uplus A_{1}$. How about partitions of the form $\left[\omega_{1}\right]^{2}=\biguplus_{i<\omega_{1}} A_{i}$?

Generalizing Sierpiński

Theorem (Sierpiński, 1933)
$\omega_{1} \nrightarrow\left[\omega_{1}\right]_{2}^{2}$.
Sierpiński theorem handles partitions of the form $\left[\omega_{1}\right]^{2}=A_{0} \uplus A_{1}$. How about partitions of the form $\left[\omega_{1}\right]^{2}=\biguplus_{i<\omega_{1}} A_{i}$?

Theorem (Erdös-Hajnal-Rado, 1965)
CH entails $\omega_{1} \nrightarrow\left[\omega_{1}\right]_{\omega_{1}}^{2}$.

Generalizing Sierpiński

Theorem (Erdös-Hajnal-Rado, 1965)
CH entails $\omega_{1} \nrightarrow\left[\omega_{1}\right]_{\omega_{1}}^{2}$.
Theorem (Todorčević, 1987)
$\omega_{1} \nrightarrow\left[\omega_{1}\right]_{\omega_{1}}^{2}$ holds in ZFC.

Generalizing Sierpiński

Theorem (Sierpiński, 1933) $\omega_{1} \nrightarrow\left[\omega_{1}\right]_{2}^{2}$.

Theorem (Todorčević, 1987)
$\omega_{1} \nrightarrow\left[\omega_{1}\right]_{\omega_{1}}^{2}$.

- A function witnessing the failure of the square bracket relation is considered as a strong coloring.

Shelah's study of strong colorings

The rectangular square-bracket relation

Negative square-bracket relation
Let $\lambda \nRightarrow[\lambda]_{\kappa}^{2}$ denote the assertion:
There exists a function $f:[\lambda]^{2} \rightarrow \kappa$, such that for every subset
$X \subseteq \lambda$ of size λ, we have $f^{\prime \prime}[X]^{2}=\kappa$.
Negative rectangular square-bracket relation
Let $\lambda \nRightarrow[\lambda ; \lambda]_{\kappa}^{2}$ denote the assertion:
There exists a function $f:[\lambda]^{2} \rightarrow \kappa$, such that for every subsets X, Y of λ, each of size λ, we have $f[X \circledast Y]=\kappa$.

The rectangular square-bracket relation (Cont.)

Theorem (Erdös-Hajnal-Rado, 1965)
CH entails $\omega_{1} \nrightarrow\left[\omega_{1}\right]_{\omega_{1}}^{2}$.
Theorem (Todorčević, 1987)
$\omega_{1} \nrightarrow\left[\omega_{1}\right]_{\omega_{1}}^{2}$ holds in ZFC.

The rectangular square-bracket relation (Cont.)

Theorem (Erdös-Hajnal-Rado, 1965)
CH entails $\omega_{1} \nrightarrow\left[\omega_{1} ; \omega_{1}\right]_{\omega_{1}}^{2}$.
Theorem (Todorčević, 1987)
$\omega_{1} \nrightarrow\left[\omega_{1}\right]_{\omega_{1}}^{2}$ holds in ZFC.

The rectangular square-bracket relation (Cont.)

Theorem (Erdös-Hajnal-Rado, 1965)
CH entails $\omega_{1} \nrightarrow\left[\omega_{1} ; \omega_{1}\right]_{\omega_{1}}^{2}$.
Theorem (Todorčević, 1987)
$\omega_{1} \nrightarrow\left[\omega_{1}\right]_{\omega_{1}}^{2}$ holds in ZFC.
Theorem (Moore, 2006)
$\omega_{1} \nrightarrow\left[\omega_{1} ; \omega_{1}\right]_{\omega_{1}}^{2}$ holds in ZFC.

Main result: comparing squares with rectangles

Theorem
TFAE for all cardinals λ, κ :

- $\lambda^{+} \nrightarrow\left[\lambda^{+}\right]_{\kappa}^{2}$
- $\lambda^{+} \nrightarrow\left[\lambda^{+} ; \lambda^{+}\right]_{\kappa}^{2}$

Main result: comparing squares with rectangles

Theorem
TFAE for all cardinals λ, κ :

- $\lambda^{+} \nrightarrow\left[\lambda^{+}\right]_{\kappa}^{2}$
- $\lambda^{+} \nrightarrow\left[\lambda^{+} ; \lambda^{+}\right]_{\kappa}^{2}$

The above theorem was the missing link to the following corollary.
Corollary (Eisworth + Shelah + R.)
TFAE for every uncountable cardinal λ :

- $\lambda^{+} \nrightarrow\left[\lambda^{+}\right]_{\lambda^{+}}^{2}$
- $\operatorname{Pr}_{0}\left(\lambda^{+}, \lambda^{+}, \omega\right)$

For the definition of Pr_{0}, see appendix.

Surprise, Surprise!!

Main result in two parts

Theorem
TFAE for all cardinals λ, κ :

- $\lambda^{+} \nrightarrow\left[\lambda^{+}\right]_{\kappa}^{2}$
- $\lambda^{+} \nrightarrow\left[\lambda^{+} ; \lambda^{+}\right]_{\kappa}^{2}$

The theorem will follow from the following two ZFC results:

1. if $\lambda=\operatorname{cf}(\lambda)$, then $\lambda^{+} \nrightarrow\left[\lambda^{+} ; \lambda^{+}\right]_{\lambda^{+}}^{2}$ holds;

Main result in two parts

Theorem
TFAE for all cardinals λ, κ :

- $\lambda^{+} \nrightarrow\left[\lambda^{+}\right]_{\kappa}^{2}$
- $\lambda^{+} \nrightarrow\left[\lambda^{+} ; \lambda^{+}\right]_{\kappa}^{2}$

The theorem will follow from the following two ZFC results:

1. if $\lambda=\operatorname{cf}(\lambda)$, then $\lambda^{+} \nrightarrow\left[\lambda^{+} ; \lambda^{+}\right]_{\lambda^{+}}^{2}$ holds;
2. if $\lambda>\operatorname{cf}(\lambda)$, then there exists a function r ts : $\left[\lambda^{+}\right]^{2} \rightarrow\left[\lambda^{+}\right]^{2}$ such that for every cofinal subsets X, Y of λ^{+}, there exists a cofinal subset $Z \subseteq \lambda^{+}$such that $r t s[X \circledast Y] \supseteq Z \circledast Z$.

Successors of regulars

Successors of regulars - in ZFC

Let λ denote a regular cardinal. Then:

1. (Todorčević, 1987) $\lambda^{+} \nrightarrow\left[\lambda^{+}\right]_{\lambda^{+}}^{2}$ [Partitioning pairs of countable ordinals]

Successors of regulars - in ZFC

Let λ denote a regular cardinal. Then:

1. (Todorčević, 1987) $\lambda^{+} \nrightarrow\left[\lambda^{+}\right]_{\lambda^{+}}^{2}$ [Partitioning pairs of countable ordinals]
2. (Shelah, 1987) $\lambda^{+} \nrightarrow\left[\lambda^{+} ; \lambda^{+}\right]_{\lambda^{+}}^{2}$, if $\lambda>2^{\aleph_{0}}{ }_{[5 h: 280]}$

Successors of regulars - in ZFC

Let λ denote a regular cardinal. Then:

1. (Todorčević, 1987) $\lambda^{+} \nrightarrow\left[\lambda^{+}\right]_{\lambda^{+}}^{2}$ [Partitioning pairs of countable ordinals]
2. (Shelah, 1987) $\lambda^{+} \nrightarrow\left[\lambda^{+} ; \lambda^{+}\right]_{\lambda^{+}}^{2}$, if $\lambda>2^{\aleph_{0}}{ }_{[5 h: 280]}$
3. (Shelah, 1991) $\lambda^{+} \nrightarrow\left[\lambda^{+} ; \lambda^{+}\right]_{\lambda^{+}}^{2}$, if $\lambda>\aleph_{1}$ [Sh:327]

Successors of regulars - in ZFC

Let λ denote a regular cardinal. Then:

1. (Todorčević, 1987) $\lambda^{+} \nrightarrow\left[\lambda^{+}\right]_{\lambda^{+}}^{2}$ [Partitioning pairs of countable ordinals]
2. (Shelah, 1987) $\lambda^{+} \nrightarrow\left[\lambda^{+} ; \lambda^{+}\right]_{\lambda^{+}}^{2}$, if $\lambda>2^{\aleph_{0}}{ }_{[5 h: 280]}$
3. (Shelah, 1991) $\lambda^{+} \nrightarrow\left[\lambda^{+} ; \lambda^{+}\right]_{\lambda^{+}}^{2}$, if $\lambda>\aleph_{1}$ [Sh:327]
4. (Shelah, 1996) $\lambda^{+} \nrightarrow\left[\lambda^{+} ; \lambda^{+}\right]_{\lambda^{+}}^{2}$, if $\lambda=\aleph_{1}[$ Sh:572]

Successors of regulars - in ZFC

Let λ denote a regular cardinal. Then:

1. (Todorčević, 1987) $\lambda^{+} \nrightarrow\left[\lambda^{+}\right]_{\lambda^{+}}^{2}$ [Partitioning pairs of countable ordinals]
2. (Shelah, 1987) $\lambda^{+} \nrightarrow\left[\lambda^{+} ; \lambda^{+}\right]_{\lambda^{+}}^{2}$, if $\lambda>2^{\aleph_{0}}{ }_{[S h: 280]}$
3. (Shelah, 1991) $\lambda^{+} \nrightarrow\left[\lambda^{+} ; \lambda^{+}\right]_{\lambda^{+}}^{2}$, if $\lambda>\aleph_{1}$ [Sh:327]
4. (Shelah, 1996) $\lambda^{+} \nrightarrow\left[\lambda^{+} ; \lambda^{+}\right]_{\lambda^{+}}^{2}$, if $\lambda=\aleph_{1[5: 572]}$
5. (Moore, 2006) $\lambda^{+} \nrightarrow\left[\lambda^{+} ; \lambda^{+}\right]_{\lambda^{+}}^{2}$, if $\lambda=\aleph_{0}[A$ solution to the L space problem]

Successors of regulars - in ZFC

Let λ denote a regular cardinal. Then:

1. (Todorčević, 1987) $\lambda^{+} \nrightarrow\left[\lambda^{+}\right]_{\lambda^{+}}^{2}$ [Partitioning pairs of countable ordinals]
2. (Shelah, 1987) $\lambda^{+} \nrightarrow\left[\lambda^{+} ; \lambda^{+}\right]_{\lambda^{+}}^{2}$, if $\lambda>2^{\aleph_{0}}{ }_{[5 h: 280]}$
3. (Shelah, 1991) $\lambda^{+} \nrightarrow\left[\lambda^{+} ; \lambda^{+}\right]_{\lambda^{+}}^{2}$, if $\lambda>\aleph_{1}$ [Sh:327]
4. (Shelah, 1996) $\lambda^{+} \nrightarrow\left[\lambda^{+} ; \lambda^{+}\right]_{\lambda^{+}}^{2}$, if $\lambda=\aleph_{1[5 h: 572]}$
5. (Moore, 2006) $\lambda^{+} \nrightarrow\left[\lambda^{+} ; \lambda^{+}\right]_{\lambda^{+}}^{2}$, if $\lambda=\aleph_{0}[A$ solution to the L space problem]

Corollary (Shelah+Moore)
$\lambda^{+} \nrightarrow\left[\lambda^{+} ; \lambda^{+}\right]_{\lambda^{+}}^{2}$ holds for every regular cardinal λ.

Successors of regulars - in ZFC

Let λ denote a regular cardinal. Then:

1. (Todorčević, 1987) $\lambda^{+} \nrightarrow\left[\lambda^{+}\right]_{\lambda^{+}}^{2}$ [Partitioning pairs of countable ordinals]
2. (Shelah, 1987) $\lambda^{+} \nrightarrow\left[\lambda^{+} ; \lambda^{+}\right]_{\lambda^{+}}^{2}$, if $\lambda>2^{\aleph_{0}}{ }_{[5 h: 280]}$
3. (Shelah, 1991) $\lambda^{+} \nrightarrow\left[\lambda^{+} ; \lambda^{+}\right]_{\lambda^{+}}^{2}$, if $\lambda>\aleph_{1}$ [Sh:327]
4. (Shelah, 1996) $\lambda^{+} \nrightarrow\left[\lambda^{+} ; \lambda^{+}\right]_{\lambda^{+}}^{2}$, if $\lambda=\aleph_{1[5: 572]}$
5. (Moore, 2006) $\lambda^{+} \nrightarrow\left[\lambda^{+} ; \lambda^{+}\right]_{\lambda^{+}}^{2}$, if $\lambda=\aleph_{0}[A$ solution to the L space problem]

Corollary (Shelah+Moore)

$\lambda^{+} \nrightarrow\left[\lambda^{+} ; \lambda^{+}\right]_{\lambda^{+}}^{2}$ holds for every regular cardinal λ.
Remark
In a recent joint work with Todorčević, we found a uniform proof of the above $3+4+5$.

Successors of singulars

THE ANATOMY OF A LATTE

Successor of singulars - in ZFC

Theorem (Shelah, 1990's)
$\lambda^{+} \nrightarrow\left[\lambda^{+} ; \lambda^{+}\right]_{\mathrm{cf}(\lambda)}^{2}$ holds for every singular cardinal λ.

Successor of singulars - in ZFC

Theorem (Shelah, 1990's)
$\lambda^{+} \nrightarrow\left[\lambda^{+} ; \lambda^{+}\right]_{\mathrm{cf}(\lambda)}^{2}$ holds for every singular cardinal λ.
Theorem (Shelah, 1990's)
If λ is a singular cardinal of uncountable cofinality, then $E_{\mathrm{cf}(\lambda)}^{\lambda^{+}}$ carries a club-guessing sequence of a very strong form.

Theorem (Eisworth, 2010)
If λ is a singular cardinal of countable cofinality, then $E_{\omega_{1}}^{\lambda^{+}}$carries a club-guessing matrix of a very strong form.

Successor of singulars - in ZFC

Theorem (Shelah, 1990's)
$\lambda^{+} \nrightarrow\left[\lambda^{+} ; \lambda^{+}\right]_{\mathrm{cf}(\lambda)}^{2}$ holds for every singular cardinal λ.
Theorem (Shelah, 1990's)
If λ is a singular cardinal of uncountable cofinality, then $E_{\mathrm{cf}(\lambda)}^{\lambda^{+}}$ carries a club-guessing sequence of a very strong form.

Theorem (Eisworth, 2010)
If λ is a singular cardinal of countable cofinality, then $E_{\omega_{1}}^{\lambda^{+}}$carries a club-guessing matrix of a very strong form.

Still Open

Whether $\lambda^{+} \nrightarrow\left[\lambda^{+}\right]_{\lambda^{+}}^{2}$ hold for all singular λ, in ZFC.

Transforming Rectangles into Squares - in ZFC

Main technical result

For every singular cardinal λ, there exists a function $r t s:\left[\lambda^{+}\right]^{2} \rightarrow\left[\lambda^{+}\right]^{2}$ such that for every cofinal subsets X, Y of λ^{+}, there exists a cofinal subset $Z \subseteq \lambda^{+}$such that $r t s[X \circledast Y] \supseteq Z \circledast Z$. Remark: our proof builds heavily on previous arguments of Shelah, Todorčević, and most notably - Eisworth.

Transforming Rectangles into Squares - in ZFC

Main technical result
For every singular cardinal λ, there exists a function $r t s:\left[\lambda^{+}\right]^{2} \rightarrow\left[\lambda^{+}\right]^{2}$ such that for every cofinal subsets X, Y of λ^{+}, there exists a cofinal subset $Z \subseteq \lambda^{+}$such that $r t s[X \circledast Y] \supseteq Z \circledast Z$.
Remark: our proof builds heavily on previous arguments of Shelah, Todorčević, and most notably - Eisworth.
The definition of r ts

- Fix a matrix of local clubs $\left\langle C_{\alpha}^{i} \mid \alpha<\lambda^{+}, i<\operatorname{cf}(\lambda)\right\rangle$ that incorporates a club-guessing sequence/matrix.

Transforming Rectangles into Squares - in ZFC

Main technical result
For every singular cardinal λ, there exists a function $r t s:\left[\lambda^{+}\right]^{2} \rightarrow\left[\lambda^{+}\right]^{2}$ such that for every cofinal subsets X, Y of λ^{+}, there exists a cofinal subset $Z \subseteq \lambda^{+}$such that $r t s[X \circledast Y] \supseteq Z \circledast Z$.
Remark: our proof builds heavily on previous arguments of Shelah, Todorčević, and most notably - Eisworth.
The definition of r ts

- Fix a matrix of local clubs $\left\langle C_{\alpha}^{i} \mid \alpha<\lambda^{+}, i<\operatorname{cf}(\lambda)\right\rangle$ that incorporates a club-guessing sequence/matrix.
- Adapt Shelah's proof of $\lambda^{+} \nrightarrow\left[\lambda^{+} ; \lambda^{+}\right]_{\mathrm{cf}(\lambda)}^{2}$, to get a function $f:\left[\lambda^{+}\right]^{2} \rightarrow{ }^{<\omega} \operatorname{cf}(\lambda) \times{ }^{<\omega} \operatorname{cf}(\lambda)$ with strong properties.

Transforming Rectangles into Squares - in ZFC

Main technical result

For every singular cardinal λ, there exists a function $r t s:\left[\lambda^{+}\right]^{2} \rightarrow\left[\lambda^{+}\right]^{2}$ such that for every cofinal subsets X, Y of λ^{+}, there exists a cofinal subset $Z \subseteq \lambda^{+}$such that $r t s[X \circledast Y] \supseteq Z \circledast Z$.
Remark: our proof builds heavily on previous arguments of Shelah, Todorčević, and most notably - Eisworth.
The definition of r ts

- Fix a matrix of local clubs $\left\langle C_{\alpha}^{i} \mid \alpha<\lambda^{+}, i<\operatorname{cf}(\lambda)\right\rangle$ that incorporates a club-guessing sequence/matrix.
- Adapt Shelah's proof of $\lambda^{+} \nrightarrow\left[\lambda^{+} ; \lambda^{+}\right]_{\mathrm{cf}(\lambda)}^{2}$, to get a function $f:\left[\lambda^{+}\right]^{2} \rightarrow{ }^{<\omega} \operatorname{cf}(\lambda) \times{ }^{<\omega} \operatorname{cf}(\lambda)$ with strong properties.
- Given $\alpha<\beta<\lambda^{+}, \operatorname{consider}(\sigma, \eta)=f(\alpha, \beta)$;

Transforming Rectangles into Squares - in ZFC

Main technical result

For every singular cardinal λ, there exists a function $r t s:\left[\lambda^{+}\right]^{2} \rightarrow\left[\lambda^{+}\right]^{2}$ such that for every cofinal subsets X, Y of λ^{+}, there exists a cofinal subset $Z \subseteq \lambda^{+}$such that $r t s[X \circledast Y] \supseteq Z \circledast Z$. Remark: our proof builds heavily on previous arguments of Shelah, Todorčević, and most notably - Eisworth.
The definition of r ts

- Fix a matrix of local clubs $\left\langle C_{\alpha}^{i} \mid \alpha<\lambda^{+}, i<\operatorname{cf}(\lambda)\right\rangle$ that incorporates a club-guessing sequence/matrix.
- Adapt Shelah's proof of $\lambda^{+} \nrightarrow\left[\lambda^{+} ; \lambda^{+}\right]_{\mathrm{cf}(\lambda)}^{2}$, to get a function $f:\left[\lambda^{+}\right]^{2} \rightarrow{ }^{<\omega} \operatorname{cf}(\lambda) \times{ }^{<\omega} \operatorname{cf}(\lambda)$ with strong properties.
- Given $\alpha<\beta<\lambda^{+}$, consider $(\sigma, \eta)=f(\alpha, \beta)$;
- Let $\beta_{0}:=\beta$, and $\beta_{n+1}:=\min \left(C_{\beta_{n}}^{\sigma(n)} \backslash \alpha\right)$ for all $n \in \operatorname{dom}(\sigma)$;

Transforming Rectangles into Squares (Cont.)

The definition of r ts

- Fix a matrix of local clubs $\left\langle C_{\alpha}^{i} \mid \alpha<\lambda^{+}, i<\operatorname{cf}(\lambda)\right\rangle$ that incorporates a club-guessing sequence/matrix;
- Fix a function $f:\left[\lambda^{+}\right]^{2} \rightarrow{ }^{<\omega} \operatorname{cf}(\lambda) \times{ }^{<\omega} \operatorname{cf}(\lambda)$ with strong coloring properties;
- Given $\alpha<\beta<\lambda^{+}$, consider $(\sigma, \eta)=f(\alpha, \beta)$;
- Let $\beta_{0}:=\beta$, and $\beta_{n+1}:=\min \left(C_{\beta_{n}}^{\sigma(n)} \backslash \alpha\right)$ for all $n \in \operatorname{dom}(\sigma)$;

Transforming Rectangles into Squares (Cont.)

The definition of $r t s$

- Fix a matrix of local clubs $\left\langle C_{\alpha}^{i} \mid \alpha<\lambda^{+}, i<\operatorname{cf}(\lambda)\right\rangle$ that incorporates a club-guessing sequence/matrix;
- Fix a function $f:\left[\lambda^{+}\right]^{2} \rightarrow{ }^{<\omega} \operatorname{cf}(\lambda) \times{ }^{<\omega} \operatorname{cf}(\lambda)$ with strong coloring properties;
- Given $\alpha<\beta<\lambda^{+}$, consider $(\sigma, \eta)=f(\alpha, \beta)$;
- Let $\beta_{0}:=\beta$, and $\beta_{n+1}:=\min \left(C_{\beta_{n}}^{\sigma(n)} \backslash \alpha\right)$ for all $n \in \operatorname{dom}(\sigma)$;
- Let $\gamma:=\max \left\{\sup \left(C_{\beta_{n}}^{\sigma(n)} \cap \alpha\right) \mid n \in \operatorname{dom}(\sigma)\right\}$;

Transforming Rectangles into Squares (Cont.)

The definition of $r t s$

- Fix a matrix of local clubs $\left\langle C_{\alpha}^{i} \mid \alpha<\lambda^{+}, i<\operatorname{cf}(\lambda)\right\rangle$ that incorporates a club-guessing sequence/matrix;
- Fix a function $f:\left[\lambda^{+}\right]^{2} \rightarrow{ }^{<\omega} \operatorname{cf}(\lambda) \times{ }^{<\omega} \operatorname{cf}(\lambda)$ with strong coloring properties;
- Given $\alpha<\beta<\lambda^{+}$, consider $(\sigma, \eta)=f(\alpha, \beta)$;
- Let $\beta_{0}:=\beta$, and $\beta_{n+1}:=\min \left(C_{\beta_{n}}^{\sigma(n)} \backslash \alpha\right)$ for all $n \in \operatorname{dom}(\sigma)$;
- Let $\gamma:=\max \left\{\sup \left(C_{\beta_{n}}^{\sigma(n)} \cap \alpha\right) \mid n \in \operatorname{dom}(\sigma)\right\}$;
- Let $\alpha_{0}:=\alpha$, and $\alpha_{m+1}:=\min \left(C_{\alpha_{m}}^{\eta(m)} \backslash \gamma+1\right)$ for $m \in \operatorname{dom}(\eta)$

Transforming Rectangles into Squares (Cont.)

The definition of r ts

- Fix a matrix of local clubs $\left\langle C_{\alpha}^{i} \mid \alpha<\lambda^{+}, i<\operatorname{cf}(\lambda)\right\rangle$ that incorporates a club-guessing sequence/matrix;
- Fix a function $f:\left[\lambda^{+}\right]^{2} \rightarrow{ }^{<\omega} \operatorname{cf}(\lambda) \times{ }^{<\omega} \operatorname{cf}(\lambda)$ with strong coloring properties;
- Given $\alpha<\beta<\lambda^{+}$, consider $(\sigma, \eta)=f(\alpha, \beta)$;
- Let $\beta_{0}:=\beta$, and $\beta_{n+1}:=\min \left(C_{\beta_{n}}^{\sigma(n)} \backslash \alpha\right)$ for all $n \in \operatorname{dom}(\sigma)$;
- Let $\gamma:=\max \left\{\sup \left(C_{\beta_{n}}^{\sigma(n)} \cap \alpha\right) \mid n \in \operatorname{dom}(\sigma)\right\}$;
- Let $\alpha_{0}:=\alpha$, and $\alpha_{m+1}:=\min \left(C_{\alpha_{m}}^{\eta(m)} \backslash \gamma+1\right)$ for $m \in \operatorname{dom}(\eta)$
- Put r ts $(\alpha, \beta):=\left(\alpha_{\operatorname{dom}(\eta)}, \beta_{\operatorname{dom}(\sigma)}\right)$.

Transforming Rectangles into Squares (Cont.)

The definition of r ts

- Fix a matrix of local clubs $\left\langle C_{\alpha}^{i} \mid \alpha<\lambda^{+}, i<\operatorname{cf}(\lambda)\right\rangle$ that incorporates a club-guessing sequence/matrix;
- Fix a function $f:\left[\lambda^{+}\right]^{2} \rightarrow{ }^{<\omega} \operatorname{cf}(\lambda) \times{ }^{<\omega} \operatorname{cf}(\lambda)$ with strong coloring properties;
- Given $\alpha<\beta<\lambda^{+}$, consider $(\sigma, \eta)=f(\alpha, \beta)$;
- Let $\beta_{0}:=\beta$, and $\beta_{n+1}:=\min \left(C_{\beta_{n}}^{\sigma(n)} \backslash \alpha\right)$ for all $n \in \operatorname{dom}(\sigma)$;
- Let $\gamma:=\max \left\{\sup \left(C_{\beta_{n}}^{\sigma(n)} \cap \alpha\right) \mid n \in \operatorname{dom}(\sigma)\right\}$;
- Let $\alpha_{0}:=\alpha$, and $\alpha_{m+1}:=\min \left(C_{\alpha_{m}}^{\eta(m)} \backslash \gamma+1\right)$ for $m \in \operatorname{dom}(\eta)$
- Put $r t s(\alpha, \beta):=\left(\alpha_{\operatorname{dom}(\eta)}, \beta_{\operatorname{dom}(\sigma)}\right)$.

The definition of r ts is quite natural in this context, and so the main point is to verify that the definition does the job.

Why does rts work

- For every cofinal subset $X \subseteq \lambda^{+}$, every ordinal $\delta<\lambda^{+}$, and every type p in the language of the matrix-based walks, let $X_{p}(\delta):=\{\alpha \in X \mid$ the pair (δ, α) realizes the type $p\} ;$

Why does rts work

- For every cofinal subset $X \subseteq \lambda^{+}$, every ordinal $\delta<\lambda^{+}$, and every type p in the language of the matrix-based walks, let $X_{p}(\delta):=\{\alpha \in X \mid$ the pair (δ, α) realizes the type $p\} ;$
- Denote $S_{p}^{X}:=\left\{\delta<\lambda^{+} \mid \sup \left(X_{p}(\delta)\right)=\sup (X)\right\}$;

Why does rts work

- For every cofinal subset $X \subseteq \lambda^{+}$, every ordinal $\delta<\lambda^{+}$, and every type p in the language of the matrix-based walks, let $X_{p}(\delta):=\{\alpha \in X \mid$ the pair (δ, α) realizes the type $p\} ;$
- Denote $S_{p}^{X}:=\left\{\delta<\lambda^{+} \mid \sup \left(X_{p}(\delta)\right)=\sup (X)\right\}$;
- Use the fact that the chosen matrix incorporates club guessing to argue that for every cofinal subsets of λ^{+}, X and Y, there exists a type p, for which $S_{p}^{X} \cap S_{p}^{Y}$ is stationary;

Why does rts work

- For every cofinal subset $X \subseteq \lambda^{+}$, every ordinal $\delta<\lambda^{+}$, and every type p in the language of the matrix-based walks, let $X_{p}(\delta):=\{\alpha \in X \mid$ the pair (δ, α) realizes the type $p\} ;$
- Denote $S_{p}^{X}:=\left\{\delta<\lambda^{+} \mid \sup \left(X_{p}(\delta)\right)=\sup (X)\right\}$;
- Use the fact that the chosen matrix incorporates club guessing to argue that for every cofinal subsets of λ^{+}, X and Y, there exists a type p, for which $S_{p}^{X} \cap S_{p}^{Y}$ is stationary;
- Use the fact that f oscillates quite nicely on rectangles $X \circledast Y$, so that it can produce sequences (σ, η) with successful guidelines on which columns of the matrix to advise throughout the walks, and at which step of the walks to stop. This insures that the type p gets realized quite frequently;

Why does rts work

- For every cofinal subset $X \subseteq \lambda^{+}$, every ordinal $\delta<\lambda^{+}$, and every type p in the language of the matrix-based walks, let $X_{p}(\delta):=\{\alpha \in X \mid$ the pair (δ, α) realizes the type $p\} ;$
- Denote $S_{p}^{X}:=\left\{\delta<\lambda^{+} \mid \sup \left(X_{p}(\delta)\right)=\sup (X)\right\}$;
- Use the fact that the chosen matrix incorporates club guessing to argue that for every cofinal subsets of λ^{+}, X and Y, there exists a type p, for which $S_{p}^{X} \cap S_{p}^{Y}$ is stationary;
- Use the fact that f oscillates quite nicely on rectangles $X \circledast Y$, so that it can produce sequences (σ, η) with successful guidelines on which columns of the matrix to advise throughout the walks, and at which step of the walks to stop. This insures that the type p gets realized quite frequently;
- Conclude that $r t s[X \circledast Y] \supseteq\left[S_{p}^{X} \cap S_{p}^{Y} \cap C\right]^{2}$ for the club C of ordinals of the form $M \cap \lambda^{+}$, for elementary submodels $M \prec H_{\chi}$ of size λ, that contains all relevant objects.

Thank you!

The slides of this talk may be found at the following address: http://papers.assafrinot.com/?talk=cms2011

Appendix

Definition (Shelah)

$\operatorname{Pr} 0(\lambda, \lambda, \omega)$ asserts the existence of a function $f:[\lambda]^{2} \rightarrow \lambda$ satisfying the following.
For every $n<\omega$, every $g: n \times n \rightarrow \lambda$, and every collection $\mathcal{A} \subseteq[\lambda]^{n}$ of mutually disjoint sets, of size λ, there exists some $x, y \in A$ with $\max (x)<\min (y)$ such that

$$
f(x(i), y(j))=g(i, j) \text { for all } i, j<n .
$$

