A relative of the approachability ideal, diamond and non-saturation

Boise Extravaganza in Set Theory XVIII

27-Mar-09, Boise, Idaho

Assaf Rinot Tel-Aviv University

http://www.tau.ac.il/~rinot

Diamond on successor cardinals

Definition (Jensen, '72). For a cardinal λ , and a stationary set $S \subseteq \lambda^+$, $\Diamond(S)$ asserts the existence of a collection $\{A_{\alpha} \mid \alpha \in S\}$ such that $\{\alpha \in S \mid A \cap \alpha = A_{\alpha}\}$ is stationary for all $A \subseteq \lambda^+$.

Observation. $\Diamond(S) \Rightarrow \Diamond(\lambda^+) \Rightarrow 2^{\lambda} = \lambda^+.$

Questions. 1. Does $2^{\lambda} = \lambda^+$ imply $\Diamond(\lambda^+)$? 2. What about $\Diamond(S)$ for a particular *S*?

History of the problem, I

Let
$$E_{\kappa}^{\lambda^+} := \{\delta < \lambda^+ \mid cf(\delta) = \kappa\},\$$

and $E_{\neq\kappa}^{\lambda^+} := \{\delta < \lambda^+ \mid cf(\delta) \neq \kappa\}.$

Theorem (Jensen, '74). $2^{\aleph_0} = \aleph_1 \neq \Diamond(\aleph_1)$.

Theorem (Gregory, '76). $2^{\aleph_1} = \aleph_2 \Rightarrow \diamondsuit(\aleph_2)$ provided that CH holds.

More specifically, $CH + 2^{\aleph_1} = \aleph_2$ entails:

$$\Diamond(S)$$
 for every stationary $S \subseteq E_{\aleph_0}^{\aleph_2}$.

History of the problem, II

Theorem (Shelah, '78). Assume GCH. Then for every uncountable cardinal λ :

$$\Diamond(S)$$
 for every stationary $S \subseteq E_{\neq cf(\lambda)}^{\lambda^+}$.

Since then, a chain of results of Shelah recently culminated in:

Theorem (Shelah, 2008). If $2^{\lambda} = \lambda^+$, then:

 $\Diamond(S)$ for every stationary $S \subseteq E_{\neq cf(\lambda)}^{\lambda^+}$.

In particular, for every uncountable cardinal λ :

$$2^{\lambda} = \lambda^+ \Longleftrightarrow \diamondsuit(\lambda^+).$$

4

Refining the question, I

Refined Question. Suppose $2^{\lambda} = \lambda^{+}$ for an uncountable cardinal, λ ; For which $S \subseteq E_{cf(\lambda)}^{\lambda^{+}}$, must $\Diamond(S)$ hold?

Theorem (Shelah, '80). For every regular uncountable cardinal, λ :

$$\mathsf{GCH} + \neg \diamondsuit(E_{\mathsf{cf}(\lambda)}^{\lambda^+})$$
 is consistent.

Theorem (Shelah, '84). For every singular cardinal, λ , for some non-reflecting stationary set $S \subseteq E_{cf(\lambda)}^{\lambda^+}$:

 $\operatorname{GCH} + \neg \diamondsuit(S)$ is consistent.

Refining the question, II

We shall say that $S \subseteq \lambda^+$ reflects (stationarily often) iff the following set is stationary:

 $\mathsf{Tr}(S) := \{ \gamma < \lambda^+ \mid \mathsf{cf}(\gamma) > \omega, S \cap \gamma \text{ is stationary} \}.$

Refined Question (final form). Suppose $2^{\lambda} = \lambda^+$ for a singular λ , and $S \subseteq E_{cf(\lambda)}^{\lambda^+}$ reflects, must $\Diamond(S)$ hold?

Jensen's notion of weak square

Fact (Jensen '72). \Box_{λ}^* is equivalent to the existence of a special Aronszajn tree of height λ^+ .

For the protocol, we also give the original definition:

Definition. For a cardinal λ , \Box_{λ}^{*} asserts the existence of a sequence $\langle C_{\alpha} \mid \alpha < \lambda^{+} \rangle$ such that: (1) for all limit $\alpha < \lambda^{+}$, C_{α} is a club of α , $\operatorname{otp}(C_{\alpha}) \leq \lambda$; (2) $|\{C_{\alpha} \cap \delta \mid \alpha < \lambda^{+}\}| \leq \lambda$ for all $\delta < \lambda^{+}$.

History of the problem, III

Theorem (Shelah, '84). If $2^{\lambda} = \lambda^+$ for a strong limit singular cardinal λ , and \Box^*_{λ} holds, then $\diamondsuit(S)$ for every $S \subseteq E^{\lambda^+}_{cf(\lambda)}$ that reflects.

Theorem (Zeman, 2008). If $2^{\lambda} = \lambda^+$ for a singular cardinal λ , and \Box^*_{λ} holds, then $\Diamond(S)$ for every $S \subseteq E^{\lambda^+}_{cf(\lambda)}$ that reflects.

aims and hopes

- ✓ Reducing the \square^*_{λ} hypothesis
- \checkmark Studying the effect of cardinals < λ to this problem
- ✓ Studying stronger principles (such as $\diamondsuit_{\lambda^+}^*$), and weaker principles (such as non-saturation)
- ✓ Obtaining a local information on the validity of $\Diamond(S)$ on a particular set, S
- **X** Proving " $\Diamond(E_{cf(\lambda)}^{\lambda^+})$ for every singular cardinal λ" just from GCH

Reducing weak square & obtaining local information

Shelah's weak approachability ideal

Let λ denote a singular cardinal.

Definition. $d : [\lambda^+]^2 \to cf(\lambda)$ is a *distance function* iff 1) $\alpha < \beta < \gamma < \lambda^+$ implies $d(\alpha, \gamma) \le \max\{d(\alpha, \beta), d(\beta, \gamma)\};$ 2) $\{\alpha < \gamma \mid d(\alpha, \gamma) \le i\}$ has size $< \lambda$ for all $\gamma < \lambda^+$.

Definition (Shelah). A set $T \subseteq \lambda^+$ is in $I[\lambda^+; \lambda]$ iff there exists a club $C \subseteq \lambda^+$ and a distance function, d, such that for all $\gamma \in T \cap C \cap E_{>cf(\lambda)}^{\lambda^+}$:

 $\exists A_{\gamma} \subseteq \gamma \text{ cofinal, with } \sup(d``[A_{\gamma}]^2) < cf(\lambda).$

A relative of approachability ideal

Definition (Shelah). A set $T \subseteq \lambda^+$ is in $I[\lambda^+; \lambda]$ iff there exists a club $C \subseteq \lambda^+$ and a distance function, d, such that for all $\gamma \in T \cap C \cap E_{>cf(\lambda)}^{\lambda^+}$:

 $\exists A_{\gamma} \subseteq \gamma \text{ cofinal} \land \sup(d``[A_{\gamma}]^2) < cf(\lambda).$

We now consider a local version for a particular $S \subseteq \lambda^+$.

Definition. A set $T \subseteq \mathsf{Tr}(S)$ is in $I[S; \lambda]$ iff there exists a club $C \subseteq \lambda^+$ and a distance function, d, such that for all $\gamma \in T \cap C \cap E_{>cf(\lambda)}^{\lambda^+}$:

 $\exists S_{\gamma} \subseteq S \cap \gamma \text{ stationary} \land \sup(d"[S_{\gamma}]^2) < cf(\lambda).$

Lemma. If
$$S \subseteq E_{\neq cf(\lambda)}^{\lambda^+}$$
, then $I[S; \lambda] = I[\lambda^+; \lambda] \upharpoonright Tr(S)$.

Consequences of the new ideal

The new ideal indeed supplies local information on the validity of diamond and related principles.

Theorem. If $I[S; \lambda]$ contains a stationary set, then

$$2^{\lambda} = \lambda^+ \Rightarrow \diamondsuit(S).$$

Theorem. If $I[S; \lambda]$ contains a stationary set, then $NS_{\lambda^+} \upharpoonright S$ is non-saturated.

A comparison with weak square

Let λ denote a singular cardinal, and let $S \subseteq \lambda^+$.

Observation. If $I[S; \lambda]$ contains a stationary set, then S reflects.

Proposition. Assume \Box_{λ}^* . If *S* reflects, then $I[S; \lambda]$ contains a stationary set.

Theorem. It is relatively consistent with the existence of a supercopmact cardinal that \Box_{λ}^* fails, while $I[S; \lambda]$ contains a stationary set for every $S \subseteq \lambda^+$ that reflects.

Stationary Approachability Property

Definition. For a singular cardinal, λ , SAP_{λ} asserts that $I[S; \lambda]$ contains a stationary set for every $S \subseteq E_{cf(\lambda)}^{\lambda^+}$ that reflects.

By the previous slide, SAP $_{\lambda}$ is strictly weaker than \Box_{λ}^* .

Remark. For a strong limit singular cardinal, λ , AP_{λ} is (equivalent to) the assertion that $\lambda^+ \in I[\lambda^+; \lambda]$.

The effect of smaller cardinals

A shift in focus

Instead of studying the validity of $\Diamond(S)$, we now focus on finding sufficient conditions for $I[S; \lambda]$ to contain a stationary set.

This yields a linkage between virtually unrelated objects.

Theorem. Assume GCH and that κ is a successor cardinal with no κ^+ -Souslin trees. Then $\diamondsuit(E_{cf(\lambda)}^{\lambda^+})$ holds for the class of singular cardinals λ of cofinality κ .

let us explain how small cardinals effects λ ..

The effect of smaller cardinals, I

Definition. Assume $\theta > \kappa > \omega$ are regular cardinals.

 $R_1(\theta,\kappa)$ asserts that for every function $f: E^{\theta}_{<\kappa} \to \kappa$, there exists some $j < \kappa$ such that:

 $\{\delta \in E_{\kappa}^{\theta} \mid f^{-1}[j] \cap \delta \text{ is stationary}\}\$ is stationary.

Facts. 1. $\Box_{\kappa} \Rightarrow \neg R_1(\kappa^+, \kappa)$; 2. every stationary subset of $E_{\kappa}^{\kappa^{++}}$ reflects $\Rightarrow R_1(\kappa^{++}, \kappa^+)$; 3. By Harrington-Shelah '85, $R_1(\aleph_2, \aleph_1)$ is equiconsistent with the existence of a Mahlo cardinal.

The effect of smaller cardinals, II

Theorem. Suppose $\lambda > cf(\lambda) = \kappa > \omega$; If there exists a regular $\theta \in (\kappa, \lambda)$ such that $R_1(\theta, \kappa)$ holds, then $I[E_{cf(\lambda)}^{\lambda^+}; \lambda]$ contains a stationary set.

Corollary. Suppose κ is a regular cardinal and every stationary subset of $E_{\kappa}^{\kappa^{++}}$ reflects.

Then $2^{\lambda} = \lambda^+ \Rightarrow \diamondsuit(E_{cf(\lambda)}^{\lambda^+})$ for the class of singular cardinals λ of cofinality κ^+ .

Corollary. Assume Martin's Maximum (or just PFA⁺); $\Diamond(E_{cf(\lambda)}^{\lambda^+})$ holds for every λ strong limit of cofinality ω_1 .

The effect of smaller cardinals, III

Definition. Assume $\theta > \kappa > \omega$ are regular cardinals.

 $R_2(\theta, \kappa)$ asserts that for every function $f : E^{\theta}_{<\kappa} \to \kappa$, there exists some $j < \kappa$ such that:

 $\{\delta \in E_{\kappa}^{\theta} \mid f^{-1}[j] \cap \delta \text{ is non-stationary}\}\$ is non-stationary.

Facts. 1. $R_2(\theta, \kappa) \Rightarrow R_1(\theta, \kappa)$ and hence the strength of $R_2(\kappa^+, \kappa)$ is at least of a Mahlo cardinal. 2. By Magidor '82, $R_2(\aleph_2, \aleph_1)$ is relatively consistent with the existence of a weakly compact cardinal.

Remark. The exact strength of $R_2(\aleph_2, \aleph_1)$ is unknown.

The effect of smaller cardinals, IV

Theorem. Suppose $\lambda > cf(\lambda) = \kappa > \omega$; If there exists a regular $\theta \in (\kappa, \lambda)$ such that $R_2(\theta, \kappa)$ holds, then $Tr(S) \cap E_{\theta}^{\lambda^+} \in I[S; \lambda]$ for every $S \subseteq \lambda^+$.

Corollary. Suppose $R_2(\theta, \kappa)$ holds. For every sing. cardinal λ of cofinality κ with $2^{\lambda} = \lambda^+$: $\Diamond(S)$ holds whenever $\operatorname{Tr}(S) \cap E_{\theta}^{\lambda^+}$ is stationary.

Remark. The $R_2(\cdot, \cdot)$ proof resembles the one of an analogous theorem by Viale-Sharon concerning the weak approachability ideal. The $R_1(\cdot, \cdot)$ proof builds on a fundamental fact from Shelah's *pcf* theory.

The effect of smaller cardinals, V

A surprising link between singular cardinals and smaller cardinals is the following.

Theorem. It is relatively consistent with the existence of two supercompact cardinals that there exists a *cofinality-preserving* forcing of size \aleph_3 that introduces a special Aronszajn tree of height \aleph_{ω_1+1} .

The effect of smaller cardinals, VI

Theorem. It is relatively consistent with the existence of two supercompact cardinals that there exists a *cofinality-preserving* forcing of size \aleph_3 that introduces a special Aronszajn tree of size \aleph_{ω_1+1} .

Idea of the proof: It is possible to kill $\Box_{\aleph_{\omega_1}}^*$ in such a way that all that is needed to recover it, is a certain weakening of $R_2(\aleph_2, \aleph_1)$. Now use the fact that, with a right preparation, this particular weakening can be obtained via a cofinality-preserving small forcing.

A stronger guessing principle

A stronger guessing principle, I

Definition (Jensen, '72). For a cardinal λ , $\diamondsuit^*(\lambda^+)$ asserts the existence of a collection $\{\mathcal{A}_{\alpha} \mid \alpha \in S\}$ with $|\mathcal{A}_{\alpha}| \leq \lambda$, such that $\{\alpha < \lambda^+ \mid A \cap \alpha \in \mathcal{A}_{\alpha}\}$ contains a club for all $A \subseteq \lambda^+$.

Theorem (Kunen, mid '70s). $\diamond^*(\lambda^+) \Rightarrow \diamond(S)$ for all stationary $S \subseteq \lambda^+$.

Discussion. Suppose λ is a singular strong limit. Taking into account Shelah's λ -distributive, λ^{++} -c.c. notion of forcing for killing $\Diamond(S)$ on $S \subseteq E_{cf(\lambda)}^{\lambda^+}$ that does not reflect, if we would like to establish $\diamondsuit^*(\lambda^+)$ from cardinal arithmetic, we need to assume that every stationary subset of $E_{cf(\lambda)}^{\lambda^+}$ reflects.

A stronger guessing principle, II

Definition. Refl(S) denotes the assertion that every stationary subset of S reflects.

Theorem. For λ singular, we have:

- 1. GCH + Refl $(E_{cf(\lambda)}^{\lambda^+})$ + $\Box_{\lambda}^* \Rightarrow \diamondsuit^*(\lambda^+)$;
- 2. GCH + Refl $(E_{cf(\lambda)}^{\lambda^+})$ + SAP $_{\lambda} \not\Rightarrow \Diamond^*(\lambda^+)$; 3. GCH + Refl $(E_{cf(\lambda)}^{\lambda^+})$ + SAP $_{\lambda} \Rightarrow \Diamond(S)$ for every stationary $S \subset \lambda^+$.

here, the non-implication symbol, \Rightarrow , is a Remark. slang for a consistency result modulo the existence of a supercompact cardinal.

Reflection and weak square, I

It is well-known that \Box_{λ} entails the existence of a nonreflecting stationary subset of λ^+ .

By Cummings-Foreman-Magidor 2001, it is consistent that $\Box^*_{\aleph_{\omega}}$ holds, while every stationary subset of $\aleph_{\omega+1}$ reflects.

Still, we have the following:

Proposition. Assume GCH and \Box_{λ}^* for a singular λ . Adding a λ^+ -Cohen set introduces a non-reflecting stationary subset of λ^+ .

This gives a new explanation of Shelah's theorem that if $\lambda > \kappa > cf(\lambda)$ and κ is λ^+ -supercompact, then \Box^*_{λ} fails.

Reflection and weak square, II

Proposition. Assume GCH and \Box_{λ}^* for a singular λ .

Adding a λ^+ -Cohen set introduces a non-reflecting stationary subset of λ^+ .

<u>Proof.</u> Work in V[G], where G is Add $(\lambda^+, \lambda^{++})$ -generic over V. Clearly, $\diamondsuit_{\lambda^+}^*$ fails. By $\Box_{\lambda}^* + \text{GCH}$, and the previous theorem, this must mean that there exists a stationary subset $S \subseteq E_{\text{cf}(\lambda)}^{\lambda^+}$ that does not reflect. By $|S| = \lambda^+$, we get that $S \in V[G \upharpoonright \text{Add}(\lambda^+, \alpha)]$ for some $\alpha < \lambda^{++}$. Since $\text{Add}(\lambda^+, \lambda^{++})$ is homogenous and $\text{Add}(\lambda^+, \alpha) \simeq \text{Add}(\lambda^+, 1)$, we get the conclusion of the theorem. \Box

Open problems

Open problems

Question 1. For a singular cardinal λ , must $I[E_{cf(\lambda)}^{\lambda^+}; \lambda]$ contain a stationary set?

To compare, Shelah proved that $I[\lambda^+; \lambda] \upharpoonright E_{>cf(\lambda)}^{\lambda^+}$ indeed contains a stationary set.

Question 2. Same as Question 1 for $cf(\lambda) \le \omega_1$ under PFA.

Thank you!

