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Preliminaries: Combinatorial principles

Definition (Jensen, 1960’s)

♦(S) asserts the existence of a sequence 〈Aα | α ∈ S〉 such that
{α ∈ S | A ∩ α = Aα} is stationary for every A ⊆

⋃
S .

Definition (Jensen, 1960’s)

�λ asserts the existence of a sequence 〈Cα | α < λ+〉 such that for
all limit α < λ+:

I Cα is a club in α of order-type ≤ λ;

I if β ∈ acc(Cα), then Cα ∩ β = Cβ.

3 / 33
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Definition (Jensen, 1960’s)

♦(S) asserts the existence of a sequence 〈Aα | α ∈ S〉 such that
{α ∈ S | A ∩ α = Aα} is stationary for every A ⊆

⋃
S .

Definition (Schimmerling, 1995)

�λ,<µ asserts the existence of a sequence 〈Cα | α < λ+〉 such that
for all limit α < λ+:

I 0 < |Cα| < µ;

I C is a club in α of order-type ≤ λ, for all C ∈ Cα;

I if C ∈ Cα and β ∈ acc(C ), then C ∩ β ∈ Cβ.

It is convenient to write �λ,µ for �λ,<µ+ . So, �λ ≡ �λ,1.
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Preliminaries: λ+-trees

Definition

I A λ+-tree is a tree of height λ+ whose levels are of size ≤ λ;

I A λ+-Aronszajn tree is a λ+-tree having no branches of size
λ+;

I A λ+-Souslin tree is a λ+-Aronszajn tree having no antichains
of size λ+;

I A λ+-tree is special if it is the union of λ many antichains.

Thus, a special tree is Aronszajn, and a Souslin tree is non-special.
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The role of λ

Fact
The behavior of λ+-Aronszajn and λ+-Souslin trees depends
heavily on the identity of λ.

I There exists an ω1-Aronszajn tree;

I if GCH holds, then for every regular cardinal λ, there exists a
special λ+-Aronszajn tree;

I GCH is consistent with the nonexistence of any λ+-Aronszajn
tree at some singular cardinal λ (modulo large cardinals);

I The existence of an ω1-Souslin tree is independent of GCH;

I Any ω1 -Aronszajn tree can be made special in some
cofinalities-preserving extension;

I If V = L, then for every uncountable cardinal λ, there exists a
λ+-Souslin tree which remains non-special in any
cofinalities-preserving extension.

5 / 33



The role of λ

Fact
The behavior of λ+-Aronszajn and λ+-Souslin trees depends
heavily on the identity of λ.

I There exists an ω1-Aronszajn tree;

I if GCH holds, then for every regular cardinal λ, there exists a
special λ+-Aronszajn tree;

I GCH is consistent with the nonexistence of any λ+-Aronszajn
tree at some singular cardinal λ (modulo large cardinals);

I The existence of an ω1-Souslin tree is independent of GCH;

I Any ω1 -Aronszajn tree can be made special in some
cofinalities-preserving extension;

I If V = L, then for every uncountable cardinal λ, there exists a
λ+-Souslin tree which remains non-special in any
cofinalities-preserving extension.

5 / 33



The role of λ

Fact
The behavior of λ+-Aronszajn and λ+-Souslin trees depends
heavily on the identity of λ.

I There exists an ω1-Aronszajn tree;

I if GCH holds, then for every regular cardinal λ, there exists a
special λ+-Aronszajn tree;

I GCH is consistent with the nonexistence of any λ+-Aronszajn
tree at some singular cardinal λ (modulo large cardinals);

I The existence of an ω1-Souslin tree is independent of GCH;

I Any ω1 -Aronszajn tree can be made special in some
cofinalities-preserving extension;

I If V = L, then for every uncountable cardinal λ, there exists a
λ+-Souslin tree which remains non-special in any
cofinalities-preserving extension.

5 / 33



The role of λ

Fact
The behavior of λ+-Aronszajn and λ+-Souslin trees depends
heavily on the identity of λ.

I There exists an ω1-Aronszajn tree;

I if GCH holds, then for every regular cardinal λ, there exists a
special λ+-Aronszajn tree;

I GCH is consistent with the nonexistence of any λ+-Aronszajn
tree at some singular cardinal λ (modulo large cardinals);

I The existence of an ω1-Souslin tree is independent of GCH;

I Any ω1 -Aronszajn tree can be made special in some
cofinalities-preserving extension;

I If V = L, then for every uncountable cardinal λ, there exists a
λ+-Souslin tree which remains non-special in any
cofinalities-preserving extension.

5 / 33



The role of λ (cont.)

Moreover
Many λ+-Souslin trees constructions makes an explicit distinction
between the case that λ is a regular cardinal and the case that λ is
singular.

Some of them also depends on whether λ is of countable
cofinality, or not.

Let us give two examples..
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Example 1: Jensen’s classical theorems

Theorem (Jensen, late 1960’s)

Suppose that λ is a regular cardinal.
If λ<λ = λ and ♦(Eλ+

λ ) holds, then there exists a λ+-Souslin tree.

Theorem (Jensen, early 1970’s)

Suppose that λ is a singular cardinal.
If GCH is valid and �λ holds, then there exists a λ+-Souslin tree.
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Example 2: Souslin trees which are hard to specialize

Theorem (Baumgartner, 1980’s, building on Laver)

GCH +�ℵ1 implies the existence of an ℵ2-Souslin tree which
remains non-special in any cofinalities-preserving extension.

Theorem (Cummings, 1997)

ω < λ<λ = λ+ ♦ λ implies the existence of a (< λ)-complete
λ+-Souslin tree which remains non-special in any c.p.e.

Theorem (Cummings, 1997)

Suppose that λ is a singular cardinal of countable cofinality.
If CHλ +�λ holds, and µℵ1 < λ for all µ < λ, then there exists a
λ+-Souslin tree which remains non-special in any c.p.e.

Theorem (Cummings, 1997)

Suppose that λ is a singular cardinal of uncountable cofinality.
If CHλ +�λ holds, and µℵ0 < λ for all µ < λ, then there exists a
λ+-Souslin tree which remains non-special in any c.p.e.
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This raises the following..

Question
Do one really have to come up with such a long list of variations
each time that a fundamental construction is discovered?

Isn’t
there any automatic translation between the different cardinals?

We shall propose a solution..
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Proposing a solution

10 / 33



Proposing a solution

Find a proxy!

1. Introduce a combinatorial principle from which many
constructions can be carried out uniformly;

2. Prove that this operational principle is a consequence of the
“usual” hypotheses.

Typically, this proof is divided into two or
three independent subcases. However, this is done only once.

On clause 1
Ideally, the proposed principle would squeeze the most out of the
prospective hypotheses (i.e., be logically equivalent to them).
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The proposed proxy

For cardinals λ, µ, and a nonempty set of regular cardinals Γ ⊆ λ+,
we introduce the principle ♦ Γ

λ,<µ, which combines �λ,<µ together

with a reminiscent of ♦(λ+ ∩ cof(Γ)). We then infer a λ+-Souslin
tree already from the weakest among these principles:

Proposition

Suppose that λ is an uncountable cardinal.
If ♦ Γ

λ,λ holds, then there exists a λ+-Souslin tree.

Remarks

I The construction of the above tree is indeed uniform. That is,
it does not depend on the identity of λ;

I Let κ denote the least cardinal such that λκ > λ. If Γ \ κ 6= ∅,
then the resulting tree is moreover (< κ)-complete.
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The principle ♦Γ
λ,<µ

♦ Γ
λ,<µ is a rather weak statement and hence, somewhat lengthy..

We postpone the formal introduction of ♦ Γ
λ,<µ. Instead, we

mention the following:

Fact (GCH)

In many cases, ♦ {θ}λ,<µ happens to be equivalent to the existence of

a �λ,<µ-sequence, 〈Cα | α < λ+〉, with the additional property:

I for every unbounded A ⊆ λ+, there exists some α ∈ Eλ+

θ such
that nacc(C ) ⊆ A for all C ∈ Cα.
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Is the proposed principle ♦Γ
λ,<µ any useful?
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Getting ♦Γ
λ,λ

Let λ denote a regular uncountable cardinal.

Theorem 1
If λ<λ = λ and ♦(Eλ+

λ ) holds, then ♦ {λ}λ,λ holds.

Corollary (Jensen, 1960’s)

If λ<λ = λ and ♦(Eλ+

λ ) holds, then there exists a (< λ)-complete
λ+-Souslin tree.
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Getting ♦Γ
λ,λ (cont.)

Let λ denote a regular uncountable cardinal.

Theorem 2
If λ = 2<λ < 2λ = λ+ and there exists a non-reflecting stationary
subset of Eλ+

<λ, then ♦ Γ
λ,λ holds.

Corollary (Gregory, 1976)

If λ = 2<λ < 2λ = λ+ and there exists a non-reflecting stationary
subset of Eλ+

<λ, then there exists a λ+-Souslin tree.
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Getting ♦Γ
λ,λ (cont.)

Theorem 3
If 2ℵ0 = ℵ1 and NSω1 is saturated, then ♦ Γ

ℵ1,ℵ1
holds.

Corollary (Shelah, 1984)

If 2ℵ0 = ℵ1 and NSω1 is saturated, then there exists an ℵ2-Souslin
tree.
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Getting ♦Γ
λ,λ (cont.)

Let λ denote a singular cardinal.

Theorem 4
If GCH +�λ,<cf(λ) holds, then ♦ Γ

λ,λ is valid.

Corollary (Jensen, 1970’s)

If GCH +�λ holds, then there exists a λ+-Souslin tree.

Corollary (Schimmerling, 2004)

If GCH +�λ,<ω holds, then there exists a λ+-Souslin tree.
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Nota bene

We have just seen four alternative proofs of the classical theorems
concerning the existence of Souslin tree. Yet, the actual part of the
construction was identical in all of them.

This means that any variation of the construction would
automatically apply to all the classical cases.

Let us exemplify..
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1. Souslin trees with a trivial automorphism group
Let λ denote an arbitrary uncountable cardinal.

Proposition

If ♦ Γ
λ,λ holds, then there exists a rigid λ+-Souslin tree.

Of course, the construction is uniform and we get as much
completeness as possible.
In fact, we get 2λ

+
many, pairwise non-isomorphic, such trees.

Immediate corollary

If any of the following is valid:

1. λ<λ = λ and ♦(Eλ+

λ ) holds

2. λ<λ = λ < λλ = λ+, and there exists a non-reflecting
stationary subset of Eλ+

<λ

3. λ<λ = λ = κ+ and NSκ+ � Eκ+

κ is saturated

4. GCH +�λ,<cf(λ) holds

then ∃ 2λ
+

many isomorphism types of rigid λ+-Souslin trees.
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2. Souslin trees which are hard to specialize

Let λ denote an arbitrary uncountable cardinal.

Proposition

If ♦ Γ
λ,1 holds, then there exists a λ+-Souslin tree which remains

non-special in any cofinalities-preserving extension.

As always, the construction is uniform and we get as much
completeness as possible.

Corollary

The four Baumgartner and Cummings theorems.
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Moreover
Suppose that κ < λ = λ<µ are given infinite cardinals.
If ♦ Γ

λ,1 holds with Γ \ (κ ∪ µ) 6= ∅, then ∃ a (< µ)-complete

λ+-Souslin tree with a θ-ascent path for all regular θ ≤ κ.

Corollary
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3. Your contribution!

Pick your favorite �-based/♦-based construction, and see if you
can base it on ♦ Γ

λ,1,♦ Γ
λ,<ω,♦ Γ

λ,cf(λ) or ♦ Γ
λ,λ.

An affirmative answer would make your construction portable
in-between (successors of) regular and singular cardinals.
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λ,cf(λ) or ♦ Γ
λ,λ.

An affirmative answer would make your construction portable
in-between (successors of) regular and singular cardinals.

For example, the proof of the following theorem is implicitly based
on ♦ Γ

λ,1:

Theorem (Farah-Veličković, 2006)

Assume that �λ + CHλ holds for a singular strong limit cardinal of
uncountable cofinality λ.
Then there exists a complete Boolean algebra of size λ+ which is
ccc and weakly distributive, but is not a Maharam algebra.
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λ,cf(λ) or ♦ Γ
λ,λ.

An affirmative answer would make your construction portable
in-between (successors of) regular and singular cardinals.

Theorem (Farah-Veličković), ported through Theorem 5

Assume that �λ + CHλ holds for a singular strong limit cardinal of
uncountable cofinality λ a cardinal λ ≥ d.
Then there exists a complete Boolean algebra of size λ+ which is
ccc and weakly distributive, but is not a Maharam algebra.
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Covering more recent trees constructions
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Guessing of generalized clubs: f∗(κ, S)
Let λ denote an uncountable cardinal.

Shelah’s Club Guessing Theorem

If S ⊆ Eλ+

<λ, then there exists a sequence 〈Cα | α ∈ S〉 such that:

1. Cα is a club in α for all α ∈ S ;

2. {α ∈ S | Cα ⊆ D} 6= ∅ for every club D ⊆ λ+.

König, Larson and Yoshinobu introduced a principle for guessing
generalized clubs, denoted f∗(κ,S). They proved that it follows
from ♦∗(S), and showed how to derive a Souslin tree from it.
Here is a weakening of their principle (that follows already from ♦):

Definition of f−(κ, S), for S ⊆ λ+

There exists a sequence 〈Cα | α ∈ S〉 such that:

1. for all α ∈ S , Cα is a collection of ≤ λ many clubs in [α]<κ ;
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Guessing of generalized clubs: f−(κ, S)

Let λ denote a regular uncountable cardinal.

Theorem 6
If λ = 2<λ < 2λ = λ+ and f−(λ,Eλ+

λ ) holds, then ♦ {λ}λ,λ is valid.

Corollary (König-Larson-Yoshinobu, 2007)

If λ = 2<λ < 2λ = λ+ and f∗(λ,Eλ+

λ ) holds, then there exists a
(< λ)-complete λ+-Souslin tree.
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Schimmerling’s question

Let λ denote a singular cardinal.

Question (Schimmerling, 2004)

Assuming GCH, for which µ, do �λ,<µ imply the existence of a
λ+-Souslin tree?

Partial answer (corollary)

µ = λ+, provided that ∃ non-reflecting stationary subset of Eλ+

6=cf(λ).

26 / 33



Schimmerling’s question

Let λ denote a singular cardinal.

Question (Schimmerling, 2004)

Assuming GCH, for which µ, do �λ,<µ imply the existence of a
λ+-Souslin tree?

Note
By Jensen, µ ≥ 2.
By Schimmerling, µ ≥ ω.
By Theorem 4, µ ≥ cf(λ).

Partial answer (corollary)

µ = λ+, provided that ∃ non-reflecting stationary subset of Eλ+

6=cf(λ).

26 / 33



Schimmerling’s question

Let λ denote a singular cardinal.

Question (Schimmerling, 2004)

Assuming GCH, for which µ, do �λ,<µ imply the existence of a
λ+-Souslin tree?

Note
By Jensen, µ ≥ 2.
By Schimmerling, µ ≥ ω.
By Theorem 4, µ ≥ cf(λ).
Now, how about a larger µ? Specifically, will µ = λ+ work?

Partial answer (corollary)

µ = λ+, provided that ∃ non-reflecting stationary subset of Eλ+

6=cf(λ).

26 / 33



Schimmerling’s question

Let λ denote a singular cardinal.

Question (Schimmerling, 2004)

Assuming GCH, for which µ, do �λ,<µ imply the existence of a
λ+-Souslin tree?

Theorem 7
If λ = 2<λ < 2λ = λ+ and there exists a non-reflecting stationary
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The extent of ♦Γ
λ,<µ
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The extent of ♦Γ
λ,<µ

Theorem
In all the below cases, the following two are equivalent:

1. �λ,<µ + CHλ

2. ♦ Γ
λ,<µ

µ λ cf(λ) Remarks

µ = 2 λ ≥ ℵ1 any Γ = Reg(λ) := {θ < λ | cf(θ) = θ}
µ ≤ cf(λ) λ = ℵ1 any Γ = Reg(λ), assuming CH

µ ≤ cf(λ) λ > ℵ1 ctbl Γ = {θ} for all large enough θ ∈ Reg(λ)

µ ≤ cf(λ) λ > ℵ1 unctbl Γ containing a final segment of Reg(λ)

µ = λ+ λ ≥ ℵ1 any some Γ, if: 2<λ = λ & ¬Refl(Eλ+

6=cf(λ))

µ = λ+ sing. any some Γ, if: 2<λ = λ & SNR(Eλ+

cf(λ))

28 / 33



The definition of ♦Γ
λ,<µ
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The definition of ♦Γ
λ,<µ

Definition
♦ Γ
λ,<µ asserts the existence of two sequences, 〈Cα | α < λ+〉 and
〈ϕθ | θ ∈ Γ〉, such that all of the following holds:

I 〈Cα | α < λ+〉 is a �λ,<µ-sequence;

I otp(C ) < λ whenever C ∈ Cα and cf(α) < λ;

I Γ is a non-empty set of regular cardinals < λ+;

I ϕθ : [λ+]<λ → [λ+]≤λ is a function, for all θ ∈ Γ;
I for every subset A ⊆ λ+, every club D ⊆ λ+, and every θ ∈ Γ,

there exists some α ∈ Eλ+

θ such that:

1. sup(acc(C )) = α for some C ∈ Cα;
2. for every C ∈ Cα, either sup(acc(C )) < α, or

sup{δ ∈ nacc(acc(C )) ∩ D | ϕθ(C ∩ δ) = A ∩ δ} = α.
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Open Problems

31 / 33



Two questions

1. Assume �λ,cf(λ) + every stationary subset of λ+ reflects.
Can you find a �λ,λ-sequence 〈Cα | α < λ+〉 such that for

every club D ⊆ λ+, there exists some α ∈ Eλ+

6=cf(λ) with

sup(nacc(C ) ∩ D) = α for all C ∈ Cα?

2. Let Refl(λ+, κ) assert that for every stationary S ⊆ Eλ+

κ ,
there exists some α ∈ Eλ+

>κ for which S ∩ α is stationary.

Let WRefl(λ+, κ) assert that for every S ⊆ Eλ+

κ and
f : S → λ, there exists some α ∈ Eλ+

>κ such that f � C is
non-injective for every club C ⊆ α.
Question: Does WRefl(λ+, cf(λ)) imply Refl(λ+, cf(λ))?
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Thank you!
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