
INFINITE COMBINATORIAL TOPOLOGY

ASSAF RINOT AND ROY TEPER

Abstract. We summarize our view on the course given by Dr. Boaz Tsaban at the Weiz-
mann Institute of Science, Fall 2006.

1. 03.11.05

Definition 1.1. Define the Baire space to be the family of all functions from N to N, and

denote it by NN.

Definition 1.2. Assume X is a set. A family I ⊆ P(X) is an ideal over X iff it satisfies:

• ∅ ∈ I.

• A ∈ I =⇒ P(A) ⊆ I.

• A,B ∈ I =⇒ A ∪B ∈ I.

The ideal is said to be non-trivial if, additionally :

•
{
{x} | x ∈ X

}
⊆ I.

If I 6= P(X) (equivalently, if X 6∈ I) we say that I is a proper ideal.

Definition 1.3. Assume I is an ideal over N, for f, g ∈ NN, put:

f ≤I g iff {n ∈ N | f(n) > g(n)} ∈ I.

Let Ifin := {X ⊆ N | |X| < ℵ0} be the ideal of finite subsets of N and J := {∅}.
Define two binary relations on NN: ≤∗:=≤Ifin

and ≤:=≤J , i.e., f ≤∗ g iff there exists

some m ∈ N such that f(n) ≤ g(n) for all n > m, and f ≤ g iff f(n) ≤ g(n) holds for all n.

Lemma 1.4. 〈NN,≤∗〉 is a quasi-ordered set, that is, ≤∗ is a reflexive and a transitive binary

relation on NN.

Definition 1.5. For a set A ⊆ NN, define the downward closure of A:

A := {f ∈ NN | ∃g ∈ A(f ≤∗ g)}.

Let the external cofinality of A be ecf(A) := min{|D| | D ⊆ NN and A ⊆ D}.

By ”our view” we mean that sometimes we omit material given in class, sometimes we give alternative
definitions or proofs, and sometimes we include our own additional propositions. However, we are always
consistent with the material given in class.
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It is obvious that ecf(A) = ecf(A) ≤ |A| for all A ⊆ NN.

Definition 1.6. A subset B ⊆ NN is said to be bounded iff ecf(B) ≤ 1.

As expected, we say that B is unbounded iff ecf(B) > 1.

Definition 1.7. A subset D ⊆ NN is said to be dominating (or cofinal) iff D = NN.

Definition 1.8. We define three important cardinals:

(i) b := min{|B| | B ⊆ NN and ecf(B) > 1}.
(ii) d := ecf(NN).

(iii) c := |NN|.

Lemma 1.9. ℵ0 < b ≤ d ≤ c = 2ℵ0.

Proof. To see that b is uncountable, we pick an arbitrary family A = {fn ∈ NN | n < ω} and

then find some g ∈ NN witnessing ecf(A) = 1.

Define g = gA as follows, for all n ∈ N: g(n) = max{fi(n) | 0 ≤ i ≤ n}. It is now easy to

see that A ⊆ {g} and that ecf(A) = 1.

To see that b ≤ d, it suffices to prove that if D ⊆ NN is cofinal, then D is unbounded.

Towards a contradiction, assume there exists some dominating D ⊆ NN such that ecf(D) = 1.

Pick g ∈ NN such that D ⊆ {g}. It follows that NN ⊆ D ⊆ {g}, i.e., that ecf(NN) = 1, which

is an absurd.1 �

Corollary 1.10. If CH holds (that is, if c = ℵ1), then b = d = c = ℵ1.

It is worth mentioning that an unbounded family is not necessarily cofinal, e.g., take

{f ∈ NN | ∀n ∈ N(f(2n) = 0)}.

Lemma 1.11. There exists a b-scale, that is, a sequence 〈fα ∈ NN | α < b〉, such that:

(a) ecf{fα | α < b} > 1;

(b) α < β < b implies fα ≤∗ fβ.

Proof. By definition of b, we may pick an unbounded family B = {gα ∈ NN | α < b}.
We now define the b-scale by induction on α < b. Put f0 := g0.

Assume now {fβ | β < α} had already been defined. Since α < b, ecf({fβ | β < α}) = 1,

we may pick an exemplifying h ∈ NN. Put fα := max{gα, h}.2 End of the construction.

Put B′ := {fα | α < b}. Since gα ≤∗ fα for all relevant α, we get that B ⊆ B′, thus,

1 < ecf(B) ≤ ecf(B′) and property (a) is satisfied. Property (b) follows immediately from

the construction. �
1For each f ∈ NN: f ≤∗ (f + 1) and (f + 1) 6≤∗ f , where (f + 1)(n) = f(n) + 1 for all n ∈ N.
2Here, max denotes the pointwise-maximum function between two functions of the same domain.
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Lemma 1.12. There exists a d-scale, that is, a sequence 〈fα ∈ NN | α < d〉, such that:

(a) {fα | α < d} is cofinal;

(b) α < β < d implies fβ 6≤∗ fα.

In particular, for all g ∈ NN, there exists some α < d such that fβ 6≤∗ g whenever α < β < d.

Proof. By definition of d, we may pick a family D = {gα | α < d} such that D = NN.

We now define the d-scale by induction on α < d. Put f0 := g0.

Assume now {fβ | β < α} had already been defined. Since α < d, we may pick hα ∈ NN

such that hα 6∈ {fβ | β < α}. Put fα := max{gα, hα}. End of the construction.

Just like in the preceding proof, we put D′ := {fα | α < b} and notice that the two

properties holds for D′. Being user-friendly, we now give a direct proof for the last property.

Fix g ∈ NN.

By NN = D ⊆ D′ ⊆ NN, we may pick α < d such that g ≤∗ fα.

Suppose there exists β > α such that fβ ≤∗ g, then, in particular fβ ≤∗ fα. It follows

from α < β that α ∈ {γ | γ < β} and fβ ∈ {fγ | γ < β}. A moment’s reflection make it

clear that this implies hβ ∈ {fβ} ⊆ {fγ | γ < β} which is obviously a contradiction to the

choice of hβ. �

Claim 1.13. b is a regular cardinal, that is, cf(b) = b.

Proof. It is obvious that cf(b) ≤ b, as this is true for any infinite cardinal number.

Fix an increasing sequence of ordinals 〈αi < b | i < cf(b)〉 converging to b. Let 〈fα | α < b〉
be a b-scale. Put B := {fαi

| i < cf(b)}. We shall show that ecf(B) > 1, and then - by

definition/minimality of b - we would have to conclude that b ≤ |B| ≤ cf(b).

Assume there exists some g ∈ NN such that B ⊆ {g}, we reach a contradiction by showing

that fα ≤∗ g for all α < b.

Indeed, pick α < b and pick i < cf(b) such that α < αi. We get that fα ≤∗ fαi
≤∗ g. �

Claim 1.14. b ≤ cf(d).

Proof. Fix a d-scale 〈fα ∈ NN | α < d〉, and an increasing sequence 〈αi | i < cf(d)〉 converging

to d. Put B := {fαi
| i < cf(b)}. We claim that ecf(B) > 1.

Suppose not, and let g ∈ NN be such that B ⊆ {g}. Pick α < d such that g ≤∗ fα and

i < cf(d) such that α < αi. We get from one hand that B 3 fαi
≤∗ g ≤∗ fα, while on the

other hand fαi
6≤∗ fα. A contradiction. �

Corollary 1.15. ℵ1 ≤ cf(b) = b ≤ cf(d) ≤ d ≤ c.

It is worth mentioning that the latter is all one can prove. That’s because for all cardinal

numbers κ, λ, µ, θ with ℵ1 ≤ cf(κ) = κ ≤ λ = cf(µ) ≤ θ and cf(θ) > ℵ0, there exists a model

of set theory satisfying b = κ, d = µ, cf(d) = λ and c = θ.
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Definition 1.16 (Menger’s Basis property). A metric space 〈X, d〉 is said to satisfy Menger’s

Basis property iff for each basis B, there exists a sequence 〈Bn ∈ B | n ∈ N〉 such that

X =
⋃
n∈NBn and limn→∞Diam(Bn) = 0.

Observation 1.17. Menger’s Basis property is closed hereditary.3

Notation 1.18. For a metric space 〈X, d〉, x ∈ X and δ ∈ R+, let Bδ(x) := {y ∈ X |
d(x, y) < δ} denote the open ball of radius δ, centered at x.

Definition 1.19. The canonical base for a metric space 〈X, d〉 is {Bδ(x) | δ ∈ R+, x ∈ X}.

Fact 1.20. Suppose B is a family of open sets in a metric space 〈X, d〉, satisfying:

(?) For all relevant x, y, δ with y ∈ Bδ(x), there exists U ∈ B satisfying y ∈ U ⊆ Bδ(x).

Then B is a basis for 〈X, d〉.

Lemma 1.21. A space that satisfies Menger’s Basis property is Lindelöf.

Proof. Suppose 〈X, d〉 satisfies Menger’s Basis property and U is a given open cover. Put

B := {U ∩ B 1
n
(x) | U ∈ U , n ∈ N+, x ∈ X}. Since B is a basis, we can find some F ∈ [B]ℵ0

such that
⋃
F = X. Finally, for each G ∈ F , pick a single G′ ∈ U such that G ⊆ G′, then

V := {G′ | G ∈ F} is a countable subcover of U . �

Corollary 1.22. The discrete space 〈X, d〉 satisfies Menger’s Basis property iff |X| ≤ ℵ0.

Lemma 1.23. If 〈X, d〉 is a compact metric space, then it satisfies Menger’s Basis property.

Proof. Suppose B is a basis for the space. X is a metric space, thus, it easy to find a family

{An ∈ B | n ∈ N} such that limn→∞Diam(An) = 0.

By compactness, we may pick U ∈ [B]<ω such that X =
⋃
U . Now, let {Bn | k ≤ n}

enumerate U , and for al n > k, put Bn := An. �

Definition 1.24. A space 〈X,O〉 is said to be σ-compact iff there exists a family of compact

subsets 〈Kn ⊆ X | n ∈ N〉 such that X =
⋃
n∈NKn.

It is obvious that a finite union of compact subspaces is compact, hence, we may always

assume that the family 〈Kn | n ∈ N〉 is increasing with respect to inclusion. For instance

〈R, d〉 is σ-compact, as it is the countable union of the compact intervals:

R =
⋃
n∈N

[−n, n].

3A property p is said to be closed hereditary, if for any topological space 〈X,O〉 and any closed subset
Y ⊆ X: X |= p implies Y |= p.
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Claim 1.25. If 〈X, d〉 is a σ-compact metric space, then it satisfies Menger’s Basis property.

Proof. Suppose B is a basis for the space. It follows that for all n ∈ N and x ∈ Kn, we may

find Bx,n ∈ B with x ∈ Bx,n and Diam(Bx,n) < 1
n+1

. Fix n ∈ N.

Evidently, Kn ⊆
⋃
x∈Kn

Bx,n, so by compactness, there exists f(n) ∈ N and a family

{Bm,n ∈ B | m ≤ f(n)} ⊆ {Bx,n | x ∈ Kn} s.t. Kn ⊆
⋃
m≤f(n) Bm,n and Diam(Bm,n) < 1

n+1
.

Finally, let ψ : N↔ {(m,n) | n ∈ N,m ≤ f(n)} be the order-preserving bijection.4

We have thatX =
⋃
n∈NKn =

⋃
n∈N

⋃
m≤f(n) Bm,n =

⋃
n∈NBψ(n) and limn→∞Diam(Bψ(n)) =

limn→∞
1

n+1
= 0, that is, {Bψ(n) | n ∈ N} witnesses Menger’s Basis property. �

Definition 1.26 (Menger’s covering). For a topological space 〈X,O〉, we denote by Sfin(O,O)

the property that for any countable sequence of open covers of X, 〈Un ⊆ O | n ∈ N〉, there

exists some 〈Fn ∈ [Un]<ω | n ∈ N〉 such that
⋃
n∈NFn is an open cover of X.

Observation 1.27. Menger’s covering is closed hereditary.

Observation 1.28. If 〈X,O〉 satisfies Sfin(O,O), then X is Lindelöf.

Proof. Suppose U is an open cover. Put Un := U for all n ∈ N. For Fn ∈ [Un]<ω witnessing

Sfin(O,O), then V :=
⋃
Fn is a countable subcover of U . �

Lemma 1.29. If 〈X,O〉 is a σ-compact topological space, then X |= Sfin(O,O).

Proof. Suppose X =
⋃
n∈NKn where each Kn is compact. Assume 〈Un ⊆ O | n ∈ N〉 is a

given family of covers. In particular Kn ⊆
⋃
Un for all n ∈ N. Fix n ∈ N.

By compactness, we may pick Fn ∈ [Un]<ω such that Kn ⊆
⋃
Fn.

Evidently,
⋃
n∈NFn is an open cover of X. �

Conjecture 1.30 (Menger). Sfin(O,O) is equivalent to σ-compactness.

Observation 1.31. For a space 〈X,O〉, and a sequence 〈Bn | n ∈ N〉 of bases to X, TFAE:

(a) X |= Sfin(O,O).

(b) For any countable sequence of open covers of X, 〈Vn ⊆ Bn | n ∈ N〉, there exists

some 〈Fn ∈ [Vn]<ω | n ∈ N〉 such that
⋃
n∈NFn is an open cover of X.

Proof. We assume (b) and prove (a). Suppose 〈Un ⊆ O | n ∈ N〉 is a given family of covers.

Fix n ∈ N. Let ψn : O → P(Bn) be a function such that U =
⋃
ψn(U) for all U ∈ O.5

Put Vn :=
⋃
{ψn(U) | U ∈ Un}. Clearly, Vn ⊆ Bn and

⋃
Vn =

⋃
Un = X.

Now, by the hypothesis (b), we yield Fn ∈ [Vn]<ω for all n ∈ N such that
⋃
n∈NFn covers

X. Finally, for each n ∈ N and G ∈ Fn, pick a single G′ ∈ Un such that G ⊆ G′ and put

F ′n := {G′ | G ∈ Fn}. It follows that |F ′n| ≤ |Fn| < ℵ0 and
⋃
n∈NF ′n covers X. �

4Recall the lexicographic order on N× N: (m1, n1) < (m2, n2) iff (n1 < n2) or ((n1 = n2) ∧ (m1 < m2)).
5By definition, an open set is a union of basis-elements.
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2. 10.11.05

Lemma 2.1. Sfin(O,O) is a topological property, that is, whenever 〈X1, O1〉, 〈X2, O2〉 are

topological spaces, and f : X1 → X2 is a continuous surjection, then X1 |= Sfin(O,O)

implies X2 |= Sfin(O,O).

Proof. Suppose 〈Un ⊆ O2 | n ∈ N〉 is a family of open covers of X2. For any relevant n, put

Vn := {f−1[U ] | U ∈ Un}. By continuity of f , 〈Vn ⊆ O1 | n ∈ N〉 is a family of open covers

of X1. If X1 |= Sfin(O,O), then there exists a witness in the form of 〈Gn ∈ [Vn]<ω | n ∈ N〉.
Finally, put Fn := {U | f−1[U ] ∈ Gn} and notice that 〈Fn ∈ [Un]<ω | n ∈ N〉 exemplifies

Sfin(O,O) for X2. �

Definition 2.2. For a topological space 〈X,O〉, put:

- d(X) := min{|D| | D ⊆ Xis dense in X}+ ℵ0,

- w(X) := min{|B| | B is a basis to 〈X,O〉}+ ℵ0,

- L(X) := min{µ ∈ ICN | every open cover of X contains a subcover of cardinality ≤ µ}.6

In the above terminology, a space 〈X,O〉 is separable iff d(X) = ℵ0, is seocond-countable

iff w(X) = ℵ0, and is Lindelöf iff L(X) = ℵ0.

Lemma 2.3. For any topological space 〈X,O〉: d(X) ≤ w(X) and L(X) ≤ w(X).

Proof. Fix a basis B ∈ [O]w(X). For any choice function f ∈
∏

U∈O U , Im(f) is a dense subset

(since its intersection with any non-trivial open sets is never empty). Also | Im(f)| ≤ w(X).

To see that L(X) ≤ w(X), fix an open cover U . Pick ψ : O → B such that U =
⋃
ψ(U)

for all U ∈ O. Now V :=
⋃
{ψ(U) | U ∈ U} ⊆ B is a cover of X and |V| ≤ |B|. For each

G ∈ V , pick G′ ∈ U such that G′ ⊆ G.

Finally, {G′ | G ∈ V} ⊆ U is a subcover of cardinality ≤ |B| = w(X). �

To complete the picture, we include the following two observations:

Observation 2.4. There exists a topological space 〈X, τ〉 with ℵ0 = d(X) < w(X) = ℵ1.

Proof. Take X := ω1 and τ :=
{
{0, α} | α < ω1

}
. Evidently {0} is a dense subset. Notice

that if B is a basis to X, then B = τ . It follows that w(X) = ℵ1. �

Observation 2.5. There exists a topological space 〈X, τ〉 with ℵ0 = L(X) < w(X) = ℵ1.

Proof. Put X := ω1 and τ := {α↑ | α < ω1}, where α↑ := {β < ω1 | β > α}. Since a

basis to this space induces an unbounded set in ω1 and a countable union of countable sets

is countable, w(X) must equal ℵ1. To see that L(X) = ℵ0, fix a cover U of X.

6ICN stands for the class of infinite cardinal numbers.
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Put γ := min{α < ω1 | ∃U ∈ U(α↑ ⊆ U)} and let Uγ be an exemplifying set, i.e., γ↑ ⊆ Uγ.

Now, for all β < γ (there are only countable many!), find Uβ ∈ U such that β ∈ Uβ.

It follows that {Uβ | β ≤ γ} ⊆ U is a countable subcover for X. �

It is not by chance that the two spaces mentioned above are not metric:

Lemma 2.6. If 〈X, d〉 is a metric space, then w(X) = d(X) = L(X).

Proof. Fix a dense subset D ∈ [X]d(X). Put B := {B 1
n
(x) | x ∈ D,n ∈ N+}. We shall show

that B is a basis, and conclude that w(X) ≤ |B| = |D| = d(x). Fix y ∈ X and δ ∈ R+.

Since D is dense, we may find x ∈ D ∩ Bδ(y). Since x ∈ Bδ(y) and the latter is open, then

x is an interior point, and hence for a large enough n ∈ N, we have that Bδ(y) ⊇ B 1
n
(x) ∈ B

and we are done.

We now show d(X) ≤ L(X). For n ∈ N+, it is clear that {Bδ(x) | x ∈ X, δ ∈ (0, 1
n
)} is

an open cover of X. Now, by definition of L(X), for all n ∈ N+, there exists two families

{xi,n ∈ X | i < L(X)} and {δi,n ∈ (0, 1
n
) | i < L(X)} s.t. {Bδi,n(xi,n) | i < L(X)} covers X.

Put D := {xni | n ∈ N+, i < L(X)}. Evidently, |D| ≤ L(X). We are left with showing

that D is dense, that is, to show that every member of X is a limit point of D. Fix y ∈ X.

Since the above families covers X, for all n ∈ N+, there exists in such that y ∈ Bδin,n
(xin,n),

in particular, d(y, xin,n) < 1
n
, hence, limn→∞ d(y, xin,i) = 0. Since {xin,n | n ∈ N+} ⊆ D,

then we conclude that y is a limit point of D. �

Definition 2.7. For a topological space 〈X,O〉, let I(X) := {x ∈ X | {x} ∈ O} denote the

family of all isolated points of X.

It is obvious that for all Y ⊆ X, if ∃z ∈ I(X) \ Y , then z 6∈ Y as well. Hence:

Lemma 2.8. If 〈X,O〉 is a topological space and D ⊆ X is a dense subset, then I(X) ⊆ D.

In particular, |I(X)| ≤ d(X).

Theorem 2.9 (Hurewicz, Lelek). Suppose 〈X, d〉 is a metric space.

Then X |= Sfin(O,O) iff X satisfies Menger’s Basis property.

Proof. (⇒) Suppose B is a basis for the space. It follows that for all x ∈ X and n ∈ N,

we may find Bx,n ∈ B with x ∈ Bx,n and Diam(Bx,n) < 1
n+1

. Now apply Sfin(O,O) to

〈{Bx,n | x ∈ X} | n ∈ N〉 and find Fn ∈ [{Bx,n | x ∈ X}]<ω such that X is covered by

Fn for all n ∈ N. The proof now continues in the same fashion of Claim 1.25, we find an

enumeration {Bn | n ∈ N} of
⋃
n∈NFn such that limn→∞Diam(Bn) = 0.

(⇐) Fix a family of open covers 〈Un | n ∈ N〉.
For x, y ∈ X and δ ∈ R+, put DBδ(x, y) := Bδ(x)∪Bδ(y). Let J(X) :=

{
{x} | x ∈ I(X)

}
.
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For all n ∈ N, define Vn to be:{
DBδ(x, y)

∣∣∣ x, y ∈ X, d(x, y) >
1

n+ 1
, δ ∈ R+,∃{U ′, U ′′} ∈ [Un]≤2

(
DBδ(x, y) ⊆ U ′ ∪ U ′′

)}
.

Claim 2.10. B :=
⋃
n∈N Vn ∪ J(X) is a basis to 〈X, d〉.

Proof. Fix x ∈ X, ε ∈ R+ and y ∈ Bε(x). We shall find U ∈ B with y ∈ U ⊆ Bε(x).

Since J(X) ⊆ B, we may assume y 6= x. Pick n ∈ N large enough such that d(x, y) > 1
n+1

.

Now, since X =
⋃
Un, there exists {U ′, U ′′} ∈ [Un]≤2 such that x ∈ U ′, y ∈ U ′′. Since U ′

is open and U ′′ ∩ Bε(x) is open, we may find some positive δ < ε small enough such that

Bδ(x) ⊆ U ′ and Bδ(y) ⊆ U ′′ ∩ Bε(x). By the choice of δ, we have Bδ(x) ∪ Bδ(y) ⊆ Bε(x).

It now follows that U := Bδ(x) ∪ Bδ(y) = DBδ(x, y) ∈ B and y ∈ U ⊆ Bε(x). �

Assume that X satisfies Menger’s basis property. By Lemmas 1.21,2.6,2.8, we may enu-

merate I(X) = {xi | i ∈ N}. Also, the hypothesis implies the existence of a family

F = {Bn ∈ B | n ∈ N} such that X =
⋃
n∈NBn and limn→∞Diam(Bn) = 0.

Fix n ∈ N and let Fn := F ∩ Vn. Since limn→∞Diam(Bn) = 0 and Diam(U) > 1
n+1

for all

U ∈ Vn, we must conclude that Fn is finite. Also, by the definition of B and F :

X =
⋃
F =

⋃( ⋃
n∈N

Fn ∪ J(X)
)

=
⋃⋃

n∈N

(
Fn ∪ {xn}

)
.

Now, for all U ∈ Fn, find U ′, U ′′ ∈ Un such that U ⊆ U ′ ∪ U ′′, and also find Gn ∈ Un such

that xn ∈ Gn. Put F ′n := {U ′, U ′′ | U ∈ Fn} ∪ {Gn} ⊆ Un.

It easy to see that |F ′n| ≤ 2 · |Fn|+ 1 < ℵ0 and that
⋃
n∈NF ′n covers X. �

Corollary 2.11. Menger’s basis property does not depend on the choice of metric for any

given metric space.

Definition 2.12. Suppose I is some index set and 〈Xi | i ∈ I〉 is a sequence of sets.

The Cartesian product of 〈Xi | i ∈ I〉 is:∏
i∈I

Xi =
{
f : I →

⋃
i∈I

Xi | f(i) ∈ Xi for all i ∈ I
}

In practice, for x ∈
∏

i∈I Xi, we usually write xi instead of x(i), and xi is referred as the

i-th coordinate of x.

The map πj :
∏

i∈I Xi → Xj, defined by πj(x) = xj, is called the projection map of
∏

i∈I Xi

on Xj.

Remark: we need the axiom of choice to ensure that the cartesian product of a non-empty

collection of non-empty sets is indeed non-empty.
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Definition 2.13. Suppose A is some index set. Assume that 〈〈Xα, Oα〉 | α ∈ A〉 is a family

of topological spaces. The product topology (or Tychonoff topology) on
∏

α∈AXα is obtained

by taking as a (canonical) base for the space 〈
∏

α∈AXα, O〉, the family :

B :=
{∏
α∈A

Uα

∣∣∣ Uα ∈ Oα for each α ∈ A
{α ∈ A | Uα 6= Xα} is finite

}
.

Notice that the set
∏

α∈A Uα, where Uα = Xα except for α = α1, ..., αn, can be written as:∏
Uα = π−1

α1
(Uα1) ∩ · · · ∩ π−1

αn
(Uαn),

Thus, the product topology is precisely that topology which has for a subbase the collection

{π−1
α (Uα) | α ∈ A,Uα is open in Xα}. Moreover, the sets Uα can be restricted to be taken

from some fixed subbases for each of the spaces 〈Xα, Oα〉 (think why?).

Example 2.14. Consider now the Baire space NN :=
∏

n∈N N where N is equipped with the

discrete topology. A subbase for this product topology is of the form {π−1
n ({k}) | n, k ∈ N}.

The canonical base for NN is B := {σ↑ | ∃I ∈ [N]<ω(σ is a function from I to N)}, where

σ↑ := {g ∈ NN | g � dom(σ) = σ}. It is a nice observation that the following is also a base:{
{(n1, . . . , nk)} × NN

∣∣∣n1, . . . , nk, k ∈ N
}

=
{
σ↑
∣∣k ∈ N(σ is a function from {1, .., k} to N)

}
.

An easy proposition to formulate is the following,

Proposition 2.15. The βth projection is continuous and open, and the Tychonoff topology

is the weakest topology on
∏
Xα for which each projection πβ is continuous.

Proof. The first part is trivial by definitions. Let O be a topology on the product in which

each projection is continuous, then for each β, if Uβ is open in Xβ, we get that π−1
β (Uβ) ∈ O.

Thus, the members of a subbase for the Tychonoff topology all belong to O, hence the

Tychonoff topology is contained in O. �

Definition 2.16. Suppose 〈X,O〉 is a topological space and some A ⊆ X.

- A is Gδ iff it is the countable intersection of open sets.

- A is Fσ iff it is the countable union of closed sets.

Evidently, an open set is Gδ and a closed set is Fσ. In metric spaces, closed set is also Gδ.

Definition 2.17. Let 〈X,O〉 be a topological space. A set A ⊆ X is nowhere dense in X iff

int(A) = ∅. A set A ⊆ X is of the first category (or meager) iff A =
⋃
n∈NAn where An is

nowhere dense for all n ∈ N. All other subsets of X are said to be of the second category.7

7int(A) stands for the interior of A, that is, the family of all interior points of A.
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Remark: It is by definition that A is nowhere dense iff A is nowhere dense. Consider a

meager set A. Now, A =
⋃
n≥1An ⊆

⋃
n≥1An, and we conclude that every meager set is a

subset of some meager Fσ set.

Fact 2.18. Suppose 〈X,O〉 is a topological space and some A ⊆ X. Then:

- bnd(X \ A) = bnd(A).8

- A = A ∪ bnd(A).

- X = int(A) ] bnd(A) ] int(X \ A).

Lemma 2.19. Suppose 〈X,O〉 is a topological space and some A ⊆ X.

Then A is nowhere dense iff (X \ A) is dense in X.

Proof. Suppose A is nowhere dense. By X = int(A) ∪ bnd(A) ∪ int(X \ A), we get that:

X = bnd(A) ∪ int(X \ A) = bnd(X \ A) ∪ int(X \ A) = X \ A,

i.e., that X \ A is dense in X. The other direction is similar. �

Example 2.20 (The Cantor set). Beginning with the unit interval I = [0, 1], we will define

closed subsets I1 ⊃ I2 ⊃ · · · in I as follows. We obtain I1 by removing the interval (1
3
, 2

3
)

from I. I2 is obtained by removing from I1 the intervals (1
9
, 2

9
) and (7

9
, 8

9
). In general, having

In−1, In is obtained by removing the open middle third of the 2n−1 closed intervals that make

In−1.

The Cantor set is obtained by intersecting all these closed sets, C :=
⋂
n∈N In.

We develop an interesting alternative description of the cantor set. Each x ∈ I has an

expansion (x1, x2, ...) in ternary form, that is xi ∈ {0, 1, 2} for all i ∈ N, and x =
∑

n∈N
xn

3n .

These expressions are unique, except that any number (but 1) expressible in an expansion

ending in a sequence of 2’s can be re-expressed in an expansion ending in a sequence of 0’s.

For example, 1
3

can be written as (0, 2, 2, 2, ...) and also as (1, 0, 0, 0, ...). We agree to use

only expressions of the first type. Then the Cantor set is precisely the set of points in I

having a ternary expansion without 1’s.

The Cantor set is closed, so in order to show that it is nowhere dense we are left with

showing that it has no interior. Every base set(a, b) ⊂ [0, 1] contains some element with 1 in

it’s ternary decomposition. Hence (a, b) * C, thus C is nowhere dense.

Another way of showing that is the following: assume (a, b) ⊂ C for some 0 ≤ a < b ≤ 1.

From monotonicity of the Lebesgue measure m, we get that b− a = m((a, b)) ≤ m(C) = 0,

a contradiction. To see that indeed m(C) = 0 notice that m(C) = limn→∞(2
3
)n.

8bnd(A) stands for the boundary of A.
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Definition 2.21. Let A be a set in a topological space 〈X,O〉.
A point x ∈ X is an accumulation point of A iff any U ∈ O with x ∈ U , satisfies

U ∩ A 6= {x}.
A point x ∈ A is an isolated point of A iff x ∈ A\Ad, where Ad is the set of all accumulation

points of A

Definition 2.22. A set F is perfect iff F is closed, non-empty, and dense in itself; i.e., each

point of F is an accumulation point of F (F does not contain isolated points).

Definition 2.23. x ∈ X is a Condensation point of A if A ∩ Ux is not countable for all

Ux ∈ O with x ∈ Ux. We denote by cond(A) the set of all condensation points of A.

Remark: Notice that I(A) ⊆ A \ cond(A).

Theorem 2.24 (Cantor-Bendixson). Suppose 〈X,O〉 is a second-countable topological space

(i.e., w(X) = ℵ0). Then every closed set F can be written as the decomposition F = P ]N ,

where P is perfect, and N is countable.

Proof. The proof is technical and non-trivial. We will formulate results (and prove some of

them) towards the theorem’s proof.

Lemma 2.25. Any topological space 〈X,O〉 can be decomposed as X = P ]N , where P is

perfect and N is scattered (that is, N doesn’t contain any set which is dense in itself).

Proof. Put A := {A ⊆ X | A is dense in itself} and P :=
⋃
A. We claim that P is perfect.

Suppose first that
⋃
A is not dense in itself, thus, there exists a point x ∈

⋃
A which is

isolated in the relative topology of
⋃
A. In particular, x ∈ A0 for some A0 ∈ A.

Now, there is an open set Ux such that Ux ∩ (
⋃
A) = {x}, therefore Ux ∩ A0 = {x}, a

contradiction to the fact that A0 is dense in itself.

We know that P is dense in itself and left with showing that P is closed. We will do that

by proving that the closure of a set dense in itself, is a set dense in itself.

Assume A is dense in itself and x ∈ A \ A, that is, U ∩ A 6= {x} for every open set U

containing x. It follows that A is dense in itself.

Put N := X \ P . By the definition of P , N must be scattered. �

Lemma 2.26. cond(A) is a closed set and cond(A ∪B) = cond(A) ∪ cond(B).

Lemma 2.27. In a second-countable space, A \ cond(A) is countable and cond(cond(A)) =

cond(A).

Proof. Fix a countable base B and a point x ∈ A \ cond(A). There exists Ux ∈ O such that

Ux ∩ A is countable, hence Bx ∩ A is countable for all Bx ∈ B such that Bx ⊆ Ux. Now

{Bx | x ∈ A \ cond(A)} is countable, thus A \ cond(A) is countable.
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Now, A = (A \ cond(A)) ∪ cond(A). Using the previuos lemma we obtain:

cond(A) = cond(A \ cond(A)) ∪ cond(cond(A)) = ∅ ∪ cond(cond(A)) = cond(cond(A)).

�

Define P := cond(X) and N := X \ P . By definition, P is dense in itself, and from

previous results it is closed, and N is countable. Hence the theorem is proved. �

Definition 2.28. Assume that X and Y are topological spaces. A function f : X → Y is

an homeomorphism iff f is a continuous open bijection.

If there exists an homeomorphism from X to Y , we say that X and Y are homeomorphic.

Remark: two spaces are homeomorphic if they are equipped with the ”same” topology.

Theorem 2.29. The Baire space NN is homeomorphic to (0, 1) \Q.

Proof. We break the proof into several lemmas.

Lemma 2.30. The Baire space is homeomorphic to (0, 1) \
{
k

2n | n ∈ N, k < 2n
}

.

Proof. Put ω := N ∪ {0}, D :=
{
k

2n | n ∈ N, k < 2n
}

and let A := (0, 1) \D.

Suppose B ⊆ A is a subset of the form B = ( n
2k ,

n+1
2k ) where n ∈ ω, k ∈ N and n < 2k.

For m ∈ ω, let Bm := ( n
2k + m

2k+m ,
n
2k + m+1

2k+m+1 ). Since D ∩ A = ∅, it is easily seen that

B =
⊎∞
m=0 Bm. For m1,m2, we write Bm1,m2 for (Bm1)m2 , and so forth..

We shall now define an homeomorphism ψ : A→ ωω.9 Fix x ∈ A.

For notational simplicity, denote fx := ψ(x). We define fx(n) by recursion on n ∈ ω.

For n = 0, let fx(1) be the unique m ∈ ω such that x ∈ Am. For the recursive step, let

fx(n+ 1) be the unique m ∈ ω such that x ∈ Af(0),..,f(n),m.

Evidently, the above defines a bijection. We prove that ψ is open and leave the proof of

continuity for the reader, since the idea of the proof is essentially the same.

Pick an open set U ⊆ A and f ∈ ψ[U ]. We shall show that f is an interior point of

ψ[U ]. Let x := ψ−1(f). Since x is an interior point of U , we may pick n ∈ ω, k ∈ N
such that x ∈ ( n

2k ,
n+1
2k ) ⊆ U . Since {x} equals the intersection of the decreasing chain

{Af(0),..,f(m) | m ∈ ω}, there must exist some m ∈ ω such that Af(0),..,f(m) = ( n
2k ,

n+1
2k ). Now,

put σ := f � {0, ..,m}. Clearly, f ∈ σ↑ ⊆ ψ[U ], where σ↑ is like in Example 2.14. �

Lemma 2.31 (Cantor). Any two dense countable sets in (0, 1) are homeomorphic.

Proof. Suppose D = {dn}n≥1 and E = {en}n≥1 are dense in (0, 1).

We define by induction on n ∈ N an increasing chain of partial functions {ψn : Dn → E |
n ∈ N} where Dn ∈ [D]n for any relevant n.

9Clearly ψ would induce an homeomorphism from A to NN.
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Induction base: for n = 1, let D1 := {d1} and ψ1(d1) := e1.

Induction hypothesis : ψn is order-preserving.

Inductive step: We divide into two case.

For n+ 1 where n is even, Put j := min{j ∈ N | dj 6∈ Dn}, and let j1, j2 be such that:

dj2 := min{d ∈ Dn | d > dj} and dj1 := max{d ∈ Dn | d < dj}.

Now, since E is a dense subset,
(
ψn(dj1), ψn(dj2)

)
∩ E is non-empty. So let i := min{i ∈

N | ei ∈
(
ψn(dj1), ψn(dj2)

)
}. Let Dn+1 := Dn ∪ {dj} and extend ψn to ψn+1 such that

ψn+1(dj) = ei. By the hypothesis, ψn is order-preserving bijection, thus ψn+1 is order-

preserving, ei 6∈ Im(ψn), and ψn+1 is bijective.

For n + 1 where n is odd, Put j := min{j ∈ N | ej 6∈ Im(ψ(Dn)}, and let j1, j2 be such

that:

dj2 := min{d ∈ Dn | ψ(d) > ej} and dj1 := max{d ∈ Dn | ψ(d) < ej}.
Now, since D is a dense subset, we may define i := min{i ∈ N | di ∈

(
dj1 , dj2

)
}. Let

Dn+1 := Dn ∪{dj} and extend ψn to ψn+1 such that ψn+1(dj) = ei. End of the construction.

Clearly, the construction ensures that for all d ∈ D and e ∈ E, there exists some large

enough n ∈ N such that d ∈ dom(ψn) and e ∈ Im(ψn) and we are done by letting ψ :=⋃
n∈N ψn.

Finally, since ψ is an order-preserving bijection, then ψ is also an homeomorphism.

�

Lemma 2.32. The complements of two dense countable sets in (0, 1) are homeomorphic.

Proof. Let Dc and Ec be the complements of some two dense countable sets in (0, 1), and

let ψ : D → E be an homeomorphism.

We shall now define an homeomorphism ϕ : Dc → Ec. Fix x ∈ Dc. Fix a convergent

sequence {dn}n≥1 ⊆ D such that lim dn = x and let ϕ(x) := limψ(dn). Now, {ψ(dn)}n≥1

is Cauchy in E, but assume that limψ(dn) ∈ E. ψ is an homeomorphism hence ψ−1 is

continuous, so ψ−1(limψ(dn)) = lim(ψ−1ψ(dn)) = lim dn = x /∈ D, a contradiction to the

fact that the range of ψ−1 is D.

ϕ is well defined (think why?), and since it is an order-preserving bijection, then ψ is an

homeomorphism. �

This completes the proof of 2.29. �
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3. 24.11.05

We now aim at developing tools to be able to prove the following.

Theorem 3.1 (Luzin). Assuming CH, there exists a Luzin set, that is, an uncountable set

L ⊆ R such that for any meager set M ⊆ R: |L ∩M | ≤ ℵ0.

Definition 3.2. Suppose X is a set. For an ideal I ⊆ P(X). Put:

• add(I) := min{|A| | A ⊆ I(
⋃
A 6∈ I)}.

• cov(I) := min{|A| | A ⊆ I(
⋃
A = X)}.

• cof(I) := min{|A| | A ⊆ I and ∀B ∈ I∃C ∈ A(B ⊆ C)}.
If I is a proper ideal, we may also define:

• non(I) := min{|A| | A ⊆ X and A 6∈ I}.

Since an ideal is closed under finite unions, always add(I) ≥ ℵ0. If I is a proper ideal,

then also add(I) ≤ cov(I). If I is non-trivial, then also cov(I) ≤ cof(I).

Intuitively, an ideal is a collection of negligible sets. Two important examples are:

Definition 3.3. Let M := {A ⊆ R | A is meager } and N := {A ⊆ R | A is a null set }.
We also consider M[0,1] :=M∩P([0, 1]) and N[0,1] := N ∩ P([0, 1]).

Evidently, M,N are non-trivial ideals and add(M), add(N ) ≥ ℵ1. |M| = |N | = 2c, since

the cantor set C ∈M∩N is of size c and then P(C) ⊆M∩N . However:

Lemma 3.4. cof(M) ≤ c and cof(N ) ≤ c.

Proof. As mentioned before, any meager set is contained in some Fσ meager set, and there

are only c many Fσ sets, hence, cof(M) ≤ c.

If A ∈ N , then for all n ∈ N, there exists some open Gn containing A and of measure

< 1
n+1

. It follows that any null set is contained in some Gδ null set, thus, cof(N ) ≤ c. �

Lemma 3.5. Assume I is an ideal over some infinite set X, then cf(add(I)) = add(I).

If non(I) is defined, then add(I) ≤ cf(non(I)).

If cof(I) is infinite, then add(I) ≤ cf(cof(I)).

Proof. Put λ := add(I), κ := cf(λ) and pick a family {λi ∈ λ | i < κ} with supi<κ λi = λ.

Let {Aα ∈ I | α < λ} witness add(I) = λ. By the definition of add(I), for all i < κ,

Bi :=
⋃
α<λi

Aα is in I. Now if λ was a singular cardinal, i.e., if κ < add(I), then
⋃
α<λAα =⋃

i<κBi ∈ I. A Contradiction.

Put θ := cof(I) and pick a witness C := {Cα ∈ I | α < θ}. Also, find {θi < θ | i < τ}
witnessing τ := cf(θ). By thinning-out if needed, we may assume non-redundancy of C, i.e.:

(?) α < β < θ → Cβ 6⊆ Cα.
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Put C ′ := {Cθi
| i < τ}. Now, if τ < add(I), then

⋃
C ′ ∈ I, and there must exist some

α < θ with
⋃
C ′ ⊆ Cα. Find i < τ with α < θi, then in particular Cθi

⊆
⋃
C ′ ⊆ Cα,

contradicting (?).

Put µ := non(I), σ := cf(µ) and pick some D ∈ [X]µ such that D 6∈ I. By |D| = µ, there

exists a family of sets {Di ∈ [D]<µ | i < σ} such that D =
⋃
i<σDi. Now, by |Di| < non(I)

for all i, we know that {Di | i < σ} ⊆ I, thus, if σ < add(I), then D =
⋃
i<σDi ∈ I. A

contradiction.

�

Corollary 3.6. Suppose I is a non-trivial proper ideal over some infinite set X, then:

ℵ0 ≤ cf(add(I)) = add(I) ≤ min
{

cov(I), cf(non(I)), cf(cof(I))
}
≤ cov(I) ≤ cof(I) ≤ 2|X|.

Theorem 3.7. Assume I is a non-trivial proper ideal over an infinite set X.

Suppose cov(I) = cof(I) = κ, then there exists some set A ⊆ X such that |A| = κ and for

all B ∈ I, |B ∩ A| < κ.

Proof. Fix 〈Bα | α < κ〉 witnessing cof(I) = κ. We define A = {aα | α < κ} by induction on

α < κ. Assume {aβ | β < α} had already been defined. Since I is non-trivial, {aβ} ∈ I for

all β < α. It follows from α < cov(I) and properness of I that (
⋃
β<α{aβ}∪

⋃
β<αBβ) 6= X,

so let us pick aα ∈ X \ ({aβ | β < α} ∪
⋃
β<αBβ). End of the construction.

Clearly, the construction ensures that |A| = κ. To see the other property, fix B ∈ I.

By defining properties of 〈Bα | α < κ〉, there exists some β < κ such that B ⊆ Bβ. By

the construction, for all α < κ with α > β, aα ∈ X \ Bβ and hence B ∩ A ⊆ {aδ | δ ≤ β},
that is, |B ∩ A| ≤ |β| < κ. �

Corollary 3.8. If c = ℵ1, then there exists a Sierpinski set, that is, an uncountable set

S ⊆ R such that for any null set N ⊆ R: |S ∩N | ≤ ℵ0.

Proof. Trivially, N is a proper ideal. Applying add(N ) ≥ ℵ1 and Corollary 3.6, we get that:

ℵ1 ≤ add(N ) ≤ cov(N ) ≤ cof(N ) ≤ c = ℵ1.

�

Corollary 3.9 (Luzin). If c = ℵ1, then there exists a Luzin set.

Proof. By now, the only missing ingredient is the following. �

Theorem 3.10 (Baire). M is a proper ideal.

Proof. We give a proof in a wider context, e.g., Theorem 3.16. See also Corollary 5.7. �

Thus, we yield the consistency of existence of a Luzin set. It is worth mentioning that the

non-existence of a Luzin set is also consistent.
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Definition 3.11. A set A is comeager iff Ac is meager.

Remark: Assume that A is meager, then there exist a sequence of nowhere dense sets

{Fi}i∈N such that A =
⋃
i≥1 Fi, therefore A ⊆

⋃
i≥1 Fi. We conclude that

⋂
i≥1 Fi

c ⊆ Ac,

where {Fi
c}i∈N are dense and open.

Since the converse is also true, we get that a set is comeager iff it contains a Gδ subset,

such that each open set in the intersection is dense. We will see that in complete metric

spaces, such sets are dense.

Definition 3.12. A metric space is complete iff every Cauchy sequence converges.

Lemma 3.13. Every compact subspace of a metric space is complete.

Proof. If C is compact, then any sequence from C has a converging subsequence, in particular

if the sequence is Cauchy, its (unique) limit is in C. �

Lemma 3.14. Every closed set in a complete metric space is complete.

Proof. Assume X is complete, F ⊆ X is closed, and {fn}n∈N ⊆ F is Cauchy.

{fn}n∈N ⊆ X is also Cauchy (since the metric on F is induced by the metric on X), thus

converges to some x ∈ X. On the other hand, F is closed, so x must be in F . �

Definition 3.15. X is a Baire space iff the intersection of any countable family of dense

open sets in X is dense.10

A generalization of Theorem 3.10 is the following.

Theorem 3.16. Every complete metric space is a Baire space.

Proof. Assume 〈Fi | i ∈ N〉 is a family of closed and nowhere dense subsets in a complete

metric space 〈X, d〉. We will show that G :=
(⋃

Fi
)c

is dense in X.

Pick an arbitrary open ball B. Now, B \ F1 6= ∅ (since F1 is nowhere dense and has no

interior), so we pick x1 ∈ B \ F1. X is metric hence regular, therefore there exist an open

ball B1, such that x1 ∈ B1 ⊆ B1 ⊆ B \ F1, and Diam(B1) < 1
2
. Once again, B1 \ F2 6= ∅,

x2 ∈ B1\F2 is picked and we can find some open ball B2 that satisfies x2 ∈ B2 ⊆ B2 ⊆ B1\F2

and Diam(B2) < 1
3
.

We continue likewise and construct a downward chain {Bn}n∈N and a sequence {xn}n∈N,

such that Diam(Bn) < 1
n+1

, and xn ∈ Bn for all n ∈ N. {xn}n∈N is Cauchy in B1 which is a

complete space, thus converges to some x ∈ B1. Now, B1 ∩ F1 = ∅, thus x ∈ B ∩G.

Finally, since B is an arbitrary ball, we get that G is dense. �

10Notice that a Baire space can not be a countable union of nowhere dense sets.
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Observation 3.17. Suppse 〈X,O〉 is a topological space and Y ⊆ X is such that :

• Y |= Sfin(O,O);

• If U is an open set containing Y , then X \ U |= Sfin(O,O)

then X |= Sfin(O,O).

Proof. Assume X, Y are like in the statement. Let 〈Un ⊆ O | n ∈ N〉 be a countable family

of open covers of X. By Y |= Sfin(O,O) and 〈U2n ⊆ O | n ∈ N〉 being a countable family

of open covers of Y , there exists some 〈F2n ∈ [U2n]<ω | n ∈ N〉 such that
⋃
n∈NF2n is an

open cover of Y . Put U :=
⋃⋃

n∈NF2n. Finally, since Y ⊆ U and 〈U2n+1 ⊆ O | n ∈ N〉
is an open cover of X \ U , there exists 〈F2n+1 ∈ [U2n+1]<ω | n ∈ N〉 such that

⋃
n∈NF2n+1

is an open cover of X \ U and it follows that
⋃
n∈NFn is an open cover of X exemplifying

Sfin(O,O). �

Definition 3.18. Suppose 〈X,O〉 is a topological space and κ is an infinite cardinal number.

For Y ⊆ X, we say that X is κ-concentrated at Y iff for any open U ⊇ Y : |X \ U | < κ.

Corollary 3.19. Suppose 〈X,O〉 is a topological space and Y ⊆ X is such that:

• Y |= Sfin(O,O);

• X is concentrated (i.e. ℵ1-concentrated) at Y .

then X |= Sfin(O,O).

Proof. By Observation 3.17 and the fact that any countable set satisfies Menger’s property.

�

In special cases, we can prove a stronger result. We first need another definition.

Definition 3.20. For a topological space 〈X,O〉, we denote by S1(O,O) the property that

for any countable sequence of open covers of X, 〈Un ⊆ O | n ∈ N〉, there exists some

〈Un ∈ Un | n ∈ N〉 such that X =
⋃
n∈N Un.

Observation 3.21. Suppose 〈X,O〉 is a topological space and Y ⊆ X is such that:

• Y |= S1(O,O);

• X is concentrated at Y .

then X |= S1(O,O).

Proof. Same as in Observation 3.17. �

Corollary 3.22. Suppose 〈X,O〉 is a topological space and is concentrated at some countable

Y ⊆ X, then X |= S1(O,O).
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It is worth mentioning that S1(O,O) is indeed stronger than Sfin(O,O). [0, 1] ⊆ R
is compact, hence, satisfies Menger’s property. However, for any family of open covers

〈Un | n ∈ N〉 with Diam(U) < 1
2n+17 for all n ∈ N and U ∈ Un, we get that

∑
n∈N Diam(Un) <

1 = Diam([0, 1]) for all 〈Un ∈ Un | n ∈ N〉. In particular [0, 1] cannot satisfy S1(O,O).

Lemma 3.23. If X ⊆ R is uncountable and Fσ (e.g. X is σ-compact), then X contains a

perfect set.

Proof. Assuming X =
⋃
n∈NKn, where 〈Kn | n ∈ N〉 are closed, we know that there must

exist some m ∈ N, with |Km| > ℵ0, thus, Km is an uncountable closed set. Applying

Theorem 2.24, we conclude that Km (and hence, also X) contains a perfect subset. �

Theorem 3.24. Megner’s conjecture 1.30 is consistently false.

Proof. Since the existence of a Luzin set is consistent, it suffices to prove that a Luzin set

L ⊆ R satisfies Menger’s property but is not σ-compact.

Claim 3.25. L is concentrated at some A ∈ [L]≤ℵ0.

In particular, L |= S1(O,O).

Proof. Since L ⊆ R, we have that w(L) ≤ w(R) ≤ ℵ0. It follows from Lemma 2.6 that L is

separable, so let A ⊆ L be a countable dense subset of L. To see that L is concentrated at A,

pick some open set U ⊆ R with U ⊇ A. To see |L\U | ≤ ℵ0, notice that L\U = L∩ (A\U).

Now, R \ (A \ U) = R \ (A \ U) = (R \A) ∪ (A ∩ U) ⊇ (R \A) ∪A, and the latter is surely

dense in R.11 It follows from Lemma 2.19 that A \ U is nowhere dense. Recalling that L is

a Luzin set, we conclude that L ∩ (A \ U) is countable. �

It follows that L |= Sfin(O,O). We are left with showing that L is not σ-compact. Using

Lemma 3.23, this reduces to showing that L does not contain a perfect subset. In the

following, we prove that any perfect set contains a meager subset of cardinality c, and hence,

L cannot contain a perfect subset. �

Lemma 3.26. If P ⊆ R is perfect, then there exists some X ⊆ P such that:

• X is perfect;

• X is a null set.

• X is nowhere dense and homeomorphic to the product space {0, 1}N;

In particular, any perfect subset of R is of cardinality c.

Proof. We first need the following Observation:

11Simply because (R \A) ∪A = (R \A) ∪A = R.
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Observation 3.27. Suppose 〈L,≤〉 is a linearly-ordered set.

Put B≤ := {(α, β) | α, β ∈ L, α < β},12 and let 〈L,O≤〉 be the topological space generated

by the base B≤ (This is called the interval topology).

For any perfect P ⊆ L and a closed interval I ⊆ L with I ∩ P 6= ∅, there exists some

closed interval J ⊆ I such that J ∩ P is perfect.

Proof. Assume P is perfect and I = [a, b] is an interval with P ∩I 6= ∅. If P ∩I is perfect, we

are done, so assume this is not the case, that is, at least one of the elements a, b are isolated

in P ∩ I (note that no elements of (a, b) can be isolated in [a, b]∩P ). If a is isolated (and b is

not), then we can find some a < c < b such that [c, b]∩P = I∩P \{a}, so take J := [c, b]. If b

is isolated (and a is not), then we can find some a < d < b such that [a, d]∩P = I ∩P \ {b},
so take J := [a, d]. If both a and b are isolated we can find a < c < d < b such that

[c, d] ∩ P = I ∩ P \ {a, b}, so take J := [c, d]. �

Assume P ⊂ R is a perfect set.

Let S := {s : {1, .., k} → {0, 1, 2} | k ∈ N} denote the family of finite ternary sequences.

Define a function ϕ : S → {I ⊆ R | I is a closed interval}. By induction on n - the length

of s ∈ S. For s ∈ S, we sometime write Is for ϕ(s) whenever defined.

Induction base (n = 1): Let s0 = {(1, 0)}, s1 = {(1, 1)}, s2 = {(1, 2)}, and find a family of

mutually disjoint intervals {Is1 , Is2 , Is3} such that Diam(Isi
) < 1

3
and Isi

∩P is perfect for all

i ∈ {0, 1, 2}. (E.g. take some interval I ⊆ P . Since P is prefect, I is infinite, so split it into

three mutually disjoint intervals, and apply the preceding observation on each one of them).

Induction step (n+ 1): For s ∈ S of length n, find a family of mutually disjoint intervals

F = {Is_1, Is_2, Is_3} such that F ⊆ P(Is) and Diam(Is_i) < (1
3
)i for all i ∈ {0, 1, 2}.

Put ϕ(s_i) := Is_i for all i ∈ {0, 1, 2}.
Finally, we define a fucntion ψ : {0, 2}N → P . For f ∈ {0, 2}N, ∩∞n=1If�{1,..,n} is a single

element of P , so let ψ(f) be this single element. Clearly, ψ is one-to-one.

Viewing {0, 2}N as the product of length ω of the discrete space {0, 2}, we already met the

type of arguments justifying why ψ is an homeomorphism on M := Im(ψ) (see, e.g., Lemma

2.30). Furthere more, it is not hard to see that int(M) = ∅. Since M is closed, it is also

nowhere dense. The choice of diameters in the definition of ϕ also ensures that M is a null

set.

Finally, to see that M is perfect, assume towards a contradiction that there exists some

f ∈ {0, 2}N and interval (a, b) ⊆ R such that M ∩ (a, b) = {x} where x = ψ(f). However,

by the choice of x, there exists some length n ∈ N such that x ∈ If�{1,..,n} ⊆ (a, b) and

If�{1,..,n} ∩ P is perfect. A contradiction. �

12(α, β) := {γ ∈ L | α < γ < β} is the open interval. [α, β] := {γ ∈ L | α ≤ γ ≤ β} is a closed interval,
and so on..
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Proposition 3.28. The Cantor set is homeomorphic to {0, 1}N.

Remark: Once the proposition is proved, we get that the cantor set is a subspace of the

Baire space.

Proof. Fix x ∈ C. x =
∑

n≥1
xn

3n , where for all n ∈ N, xn ∈ {0, 2}.
Define ψ : C → {0, 1}N by ψ(x) := {xn

2
}n≥1. ψ is obviously a bijection. Using similar

methods from the proof of Lemma 2.30, we get that ψ is open and continuous as well. �

A more probabilistic point of view of the set {0, 1}N is the following: a coin with equiprob-

able outcome is tossed endlessly. We define Ω to be all infinite sequences of coin tosses, i.e.,

Ω = [0, 1] (where heads is 1 and tails is 0, and we consider the binary representation of

elements of [0, 1]). The event ”the first outcome is 0” is of probability 1/2. The event ”the

first two outcomes are 0” is of probability 1/4, etc.

It follows that P ([a, b)) = b − a whenever 0 ≤ a ≤ b ≤ 1 and a, b are of the form

k/2n. Such numbers are dense, and using monotonicity of probability measure we get that

P ([a, b)) = b− a whenever 0 ≤ a ≤ b ≤ 1. This is of course the Lebesgue measure.

Example 3.29. Is Q a Gδ set?

Assume Q =
⋂
n≥1Gn where Gn is open for all n ∈ N. Obviously, Gn is dense for all

n ∈ N, since Q ⊆ Gn. We get that R \ Q =
⋃
n≥1G

c
n where Gc

n is nowhere dense for all

n ∈ N, thus R \ Q is meager. But, Q is also meager, hence R is meager, a contradiction to

Baire’s Theorem 3.10.

Definition 3.30. Assume X is a set. A family F ⊆ P(X) is a filter over X iff it satisfies:

• X ∈ F , and ∅ 6∈ F .

• A ∈ F and A ⊆ B ⊆ X =⇒ B ∈ F .

• A,B ∈ F =⇒ A ∩B ∈ F .

Intuitively, a filter is a collection of ”fat” sets. It is not hard to see that if I is a proper

ideal over X, then I∗ := {X \ A | A ∈ I} forms a filter.

It is very often that we call sets that comes from an ideal as ”sets of measure zero”, sets

the comes from a filter as ”sets of measure one”, and sets that comes from outside a given

ideal as ”sets of positive measure”.

However, this terminology might sometimes be misleading. In the following we show that

it is possible for a set to be ”of measure zero” from one ideal’s point of view, and ”of measure

one” in the view of another filter.
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Proposition 3.31. N ∩M∗ 6= ∅, that is, R can be decomposed as R = D ]M , where M is

meager and D is a null set.

Proof. Write Q as {qn}n≥1. Let {εk}k≥1 be a sequence converging to 0. For all k ∈ N pick a

sequence {rk,n}n≥1 such that
∑

n∈N rk,n < εk.

For every k ∈ N, define Dk :=
⋃
n∈N Brk,n

(qn). D :=
⋂
kDk is a null set and is the countable

intersection of open dense sets, hence comeager. Now, define M := R \D. �

The example we give next is typical of an existence theorem based on the Baire’s theorem.

We show that some element of a space must have a given property by showing that the space

is second category while the elements which do not have a given property form a set of first

category.

Definition 3.32. For an interval I ⊆ R, let C(I) denote the family of all continuous real-

valued function on I.

It is a well-known fact that a uniform limit of continuous function is continuous, thus, if

we regard C(I) as a metric space with ρ(f, g) := supx∈I |f(x) − g(x)| (for all f, g ∈ C(I),

then 〈C(I), ρ〉 is a complete metric space.

It is nice to see that if 〈f1, f2, ...〉 is a Cauchy sequence in C(I), then, for each x ∈ I,

{fn(x)}n≥1 is a Cauchy sequence of real numbers, hence converges.

Theorem 3.33. There is a continuous real-valued functions on I (some closed interval)

having a derivative at no point.

Proof. Denote by D the set of all functions in C(I) having a derivative somewhere.

Define for all n ∈ N:

Dn :=
{
f ∈ C(I)

∣∣∣ for some x ∈ [0,
n− 1

n
], whenever h ∈ (0, 1/n],

∣∣∣f(x+ h)− f(x)

h

∣∣ ≤ n
}
.

If f ∈ C(I) has a derivative at some point, then for some large enough n ∈ N, f ∈ Dn. Hence

D =
⋃
Dn. By showing that Dn is closed and has no interior (for all n) we will conclude

that C(I) \ D is of the second category.

1. Dn has no interior: Given f ∈ Dn we will find a continuous function g /∈ Dn such that

d(f, g) < ε, that is, for all x ∈ [0, n−1
n

] there is some h ∈ (0, 1/n] with
∣∣∣g(x+h)−g(x)

h

∣∣∣ > n.

Find a polynomial function P (x) on [0, 1] such that d(f, P ) < 1/2 (that is possible since

polynomials functions are dense in C(I) with the uniform metric). Let M be the maximum

slope of P in [0, 1], and let Q(x) be a continuous function consisting of straight line segments

of slope ±(M + n+ 1) constrained so that | Q(x) |< ε/2. Now, define g(x) := P (x) +Q(x).

Then d(f, g) < d(f, P ) + d(P,Q) < ε and:∣∣∣g(x+ h)− g(x)

h

∣∣∣ =
∣∣∣P (x+ h) +Q(x+ h)− P (x)−Q(x)

h

∣∣∣ ≥ ∣∣∣Q(x+ h)−Q(x)

h

∣∣∣−∣∣∣P (x+ h)− P (x)

h

∣∣∣
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But for x ∈ [0, n−1
n

], an h ∈ (0, 1/n] can be found for which the latter is greater than

(M + n+ 1)−M = n+ 1. Thus, g /∈ Dn.

2. Dn is closed: The map e : C(I) × I → R defined be e(f, x) := f(x) is continuous. It

follows that if h0 is a fixed element of (0, 1/n], the map Eh0 : C(I)× [0, n−1
n

]→ R defined by

Eh0(f, x) :=
∣∣∣f(x+h0)−f(x)

h0

∣∣∣ is continuous. Thus E−1
h0

[0, n] is closed in C(I) × [0, n−1
n

]. Define

Dh0 :=
{
f ∈ C(I)

∣∣(f, x) ∈ E−1
h0

[0, n), for some x ∈ [0, n−1
n

]
}

. Then Dh0 is closed in C(I). For

if {fm}m ⊆ Dh0 where fm → f , then {xm}m ⊆ [0, 1− 1/n] such that {fm, xm}m ⊆ E−1
h0

[0, n]

has a cluster point x. Now, (f, x) ∈ E−1
h0

[0, n], so that f ∈ Dh0 .

Now, Dn =
⋂
h0∈(0,1/n] Dh0 , establishing that Dn is closed.

�
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4. 02.12.05

Observation 4.1. For any open U ⊆ NN, |U | = c and U = NN.

Observation 4.2. For all g ∈ NN, {f ∈ NN | g ≤∗ f} is dense in NN.

Lemma 4.3. Suppose Y ⊆ NN is a compact subspace, then there exists some g ∈ NN such

that f ≤ g for all f ∈ Y .

Proof. For all n ∈ N, consider the projection πn : NN → N such that πn(f) = f(n) for all

f ∈ NN. By definition of the Baire space, each πn is continuous and by the hypothesis, Y

is compact and it follows that πn[Y ] is compact in N. Since any compact subspace of the

discrete space N is finite, we conclude that for all n ∈ N, there exists some mn ∈ N such

that πn[Y ] ⊆ {1, ..,mm}. It other words, the function g ∈ NN defined by n 7→ mn has the

property that f ≤ g for all f ∈ Y and we are done. �

Observation 4.4. For all g ∈ NN, Dg := {f ∈ NN | f ≤ g} is a closed, nowhere-dense,

subspace of NN.

Proof. Fix g ∈ NN. Assume h ∈ NN \ Dg. Then there exists some n ∈ N such that

h(n) > g(n). Then h is in the open set U = {f ∈ NN | f(n) = h(n)} and U ⊆ NN \Dg.

To see that NN\Dg is dense, we fix a base open set U , and show that U∩(NN\Dg) 6= ∅. Find

n ∈ N, and σ : {1, ..n} → N such that U = σ↑. Let h ∈ NN be such that h � {1, .., n} = σ

and h(k) = g(k) + 1 for all k > n. Clearly, h ∈ U \Dg. �

Corollary 4.5. For all g ∈ NN, Eg := {f ∈ NN | f ≤∗ g} is an Fσ meager subspace of NN.

Proof. If σ is a finite sequence of natural numbers, we may consider sw(σ, g) ∈ NN such that

sw(σ, g)(n) = σ(n) if n ∈ dom(σ) and sw(σ, g)(n) = g(n) otherwise.

Then Eg =
⋃
{Dsw(σ,g) | σ is a finite sequence of natural numbers }. �

Definition 4.6. Let Ib := {X ⊆ NN | ecf(X) ≤ 1}.

It is by the definition of b that Ib is a non-trivial proper ideal, add(Ib) = b, and Ib contains

exactly all sets that are ≤∗-bounded in NN.

Also notice that Ib = {X ⊆ NN | ecf(X) < b} and cov(Ib) = cof(Ib) = d.

Corollary 4.7. Suppose that Z ⊆ NN is a b-compact topological space, then Z ∈ Ib, i.e.,

there exists some g ∈ NN such that f ≤∗ g for all f ∈ Z.

In particular (since ℵ1 ≤ b), any σ-compact subspace of NN is ≤∗-bounded.

Proof. Let 〈Zα ⊆ Z | α < κ〉 witness b-compactness of Z (in particular, κ < b). For all

α < κ, Theorem 4.3 implies that Zα ∈ Ib (and even more, but we don’t care). Now, by

κ < add(Ib), Z =
⋃
α<κ Zα ∈ Ib and we are done. �
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Observation 4.8. cov(M) ≤ d.

Proof. Pick a cofinal subset D ⊆ [NN]d and an homeomorphism ψ : NN → R\Q. By Corollary

4.5 and {{f} | f ∈ D} ⊆ Ib, we have that {ψ[{f}] | f ∈ D} ⊆ M. Finally, since

R = ψ[NN] ∪Q = ψ[
⋃
f∈D

{f}] ∪Q =
⋃
{ψ[{f}],Q | f ∈ D} =:

⋃
A,

and A ∈ [M]d, we conclude that cov(M) ≤ d. �

Observation 4.9. There exists X ∈ Ib with |X| = c.

In particular, if b < c, then there exists X ∈ Ib with |X| > b.

Proof. Consider X := {f} where f : N→ {2} is the constant function. �

Theorem 4.10 (Hurewicz). For all X ⊆ R, TFAE:

• X |= Sfin(O,O).

• Any continuous image of X into NN is non-dominating.

Proof. We omit the proof. Instead, we prove the following two propositions. �

Theorem 4.11. If 〈X,O〉 is a topological space and X |= Sfin(O,O), then any continuous

image of X into NN is non-dominating.

Proof. By Lemma 2.1, we may assume that X ⊆ NN and X |= Sfin(O,O). Fix m ∈ N. Put

Um := {(m, k)↑ | k ∈ N} where (m, k)↑ := {f ∈ NN | f(m) = k} for all k ∈ N. Evidently, Um
is an open cover of X (and actually of NN). Fix a bijection ψ : N× N↔ N. Fix i ∈ N.

Since X |= Sfin(O,O) and 〈Uψ(i,n) | n ∈ N〉 is a countable family of open covers of X,

there exists some 〈Fψ(i,n) ∈ [Uψ(i,n)]
<ω | n ∈ N〉 such that

⋃
n∈NFψ(i,n) is an open cover of X.

Define g : N→ N. For m ∈ N, let g(m) := 1 + max{k ∈ N | (m, k)↑ ∈ Fm}. The definition

is good since Fm ⊆ Um = {(m, k)↑ | k ∈ N} and finite. We claim that g witnesses that X is

not-dominating. We pick f ∈ X and show that χf,g := {m ∈ N | g(m) 6≤ f(m)} is infinite.

We do this by introducing some h ∈ NN with the property that {ψ
(
i, h(i)

)
| i ∈ N} ⊆ χf,g.

Fix i ∈ N. Since
⋃
n∈NFψ(i,n) is an open cover of X, there exists some n ∈ N such that

f ∈ Fψ(i,n), so let h(i) := n for such an n. End of definition. It follows that f ∈ Fψ(i,h(i)) for all

i ∈ N, and hence f(ψ(i, h(i))) ≤ g(ψ(i, h(i)))−1. In particular, ∀i ∈ N
(
ψ(i, h(i)) ∈ χf,h

)
. �

Theorem 4.12 (Rec law). Suppose 〈X,O〉 is a topological space that has a base B which is

countable and composed only of clopen sets.

If any continuous image of X into NN is non-dominating, then X |= Sfin(O,O).
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Proof. By Observation 1.31, we assume a family of open covers of X, 〈Un ⊆ B | n ∈ N〉.
Since B is countable, there exists an enumeration Un = {Um

n | m ∈ N} for all n ∈ N. Now,

for all n,m ∈ N, let V m
n := Um

n \
⋃
k<m U

k
n .

By the hypothesis on B, V m
n are open for all n,m ∈ N.

It follows that we may assume for all n ∈ N that members of Un are mutually-disjoint,

thus, for all x ∈ X, there is a unique fx ∈ NN such that x ∈ U fx(n)
n for all n ∈ N. Finally, let

ψ : X → NN be the map x 7→ fx.

To see that ψ continuous, fix some some n ∈ N and σ : {1, .., n} → N. We shall show that

ψ−1[σ↑] is open. Indeed, by definition, ψ−1[σ↑] =
⋂n
k=1 U

σ(k)
k which is a finite intersection of

open sets, thus, open.

Let g ∈ NN be a witness to the fact that ψ[X] is non-dominating. For all n ∈ N, put

Fn := {U1
n, .., U

g(n)
n }. We claim that

⋃
n∈NFn is an open cover of X. To see this, fix x ∈ X.

By definition of g, there must exist some n ∈ N with g(n) 6≤ fx(n), that is, there exists some

k < g(n) such that x ∈ Uk
n , and clearly Uk

n ∈ Fn. It follows that X =
⋃
n∈N

⋃
Fn. �

Corollary 4.13. If X ∈ [R]<d, then X |= Sfin(O,O).

Proof. By (⇐) of Theorem 4.10. �

We now get a result stronger than 3.19, but is only limited to subspaces of the real line.

Corollary 4.14. Suppose Y ⊆ X ⊆ R are such that:

• Y |= Sfin(O,O);

• X is d-concentrated at Y .

then X |= Sfin(O,O).

Proof. By Observation 3.17 and the preceding Corollary. �

Corollary 4.15. If X ⊆ R is d-concentrated at some Y ∈ [R]<d, then X |= Sfin(O,O).

Theorem 4.16. Suppose X ⊆ R is c-concentrated at some countable D ⊆ X, then X does

not contain a perfect subset.

Proof. Suppose not, and let X be a witness to that. By Lemma 3.26, X contains a closed

subspace, C, which is homeomorphic to {0, 1}N. Since C is closed and is of cardinality c, we

must conclude that C is c-concentrated on C ∩D, thus it suffices to prove the following. �

Lemma 4.17. {0, 1}ω is not c-concentrated at any of its countable subsets.

Proof. Let D = {fn | n ∈ ω} be a countable subset of {0, 1}ω.

For n ∈ ω, Un := (fn � {2n, 2n+ 1})↑ is an open set containing fn. It follows that D ⊆ U

where U :=
⋃
n∈ω Un. We are left with showing that {0, 1}ω \ U is of cardinality c.
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Indeed, for each a : ω → {0, 1}, let fa : ω → {0, 1} be the function satisfying for all n ∈ ω:

fa(2n+ a(n)) = fn(2n+ a(n)) and:

fa(2n+ 1− a(n)) = 1− fn(2n+ 1− a(n)).

It follows that {k ∈ ω | fn(k) = fa(k)} and {k ∈ ω | fn(k) 6= fa(k)} are both non-empty

for all n ∈ ω. More importantly, a 7→ fa is injective. Thus, {fa | a ∈ ω{0, 1}} is a subset of

{0, 1}ω of cardinality c and disjoint from the open set U containing D. �

Corollary 4.18. If X ⊆ R is uncountable and d-concentrated at some Y ∈ [R]ℵ0, then X is

a counter-example to Menger’s conjecture 1.30.

Proof. By Corollary 4.15, Lemma 3.23 and Theorem 4.16. �

Corollary 4.19. For all X ⊆ R, if ℵ0 < |X| < d, then X is a counter-example to Menger’s

conjecture 1.30.

In particular, if d > ℵ1, then there exists a counter-example to the conjecture.

Theorem 4.20 (Fremlin-Miller). Menger’s conjecture 1.30 is false.

Proof by Bartoszyński-Tsaban. Let D ⊆ NN be a d-scale (see Lemma 1.12) and ψ : NN ↔
[0, 1] \Q be an homemorphism (see Theorem 2.29). Consider M := ψ[D] ∪ (Q ∩ [0, 1]).

We shall show that M is d-concentrated at Q ∩ [0, 1]. Suppose that U ⊆ R is open and

U ⊃ (Q ∩ [0, 1]). It follows that:

|M \ U | = |ψ[D] ∩ ([0, 1] \ U)| = |D ∩K|,

where K := ψ−1([0, 1] \ U).

Since ([0, 1] \ U) is a closed subset of the bounded interval [0, 1], it is compact, and hence

K is compact. Applying Lemma 4.3 on K, we find some g ∈ NN such that K ⊆ {g}. Finally,

since D is a d-scale we conclude that |M \ U | = |D ∩K| ≤ |D ∩ {g}| < d. �

Similarly, If B ⊆ NN is a b-scale, then H := ψ[B]∪(Q∩[0, 1]) is b-concentrated at Q∩[0, 1],

thus, H ⊆ R is another counter-example to Menger’s conjecture.

We next give a little background on connectedness.

Definition 4.21. A space X is disconnected iff there are disjoint non-empty open sets H,K

such that X = H ∪K. When no such disconnection exists, X is connected.

A space X is totally disconnected iff for every x ∈ X the only connected set containing x

is {x}.

Note that we can replace ”open” in the definition by ”closed”. It is apparent, then, that

X is connected iff there are no clopen (open-closed) subsets of X but X itself and ∅.
The Cantor set, the rationals and the irrationals, are all totally disconnected spaces.
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Definition 4.22. A space X is 0-dimensional iff X has a base consisting of only clopen sets.

Equivalently, X is 0-dimensional iff for each x ∈ X and a closed set A ⊂ X not containing

x, there is a clopen set containing x and disjoint from A. By this, the following is immediate.

Proposition 4.23. Every 0-dimensional T1 space is totally disconnected.13

Lemma 4.24. If X is a compact, totally disconnected Hausdorff space, then whenever x 6= y

in X, there is a clopen set in X containing x but not y.

Definition 4.25. A space 〈X,O〉 is locally compact iff whenever x /∈ A where A is closed,

there is an open set with a compact closure disjoint from A.

Observation 4.26. If 〈X,O〉 is a compact topological space and Y ⊆ X is a closed subspace,

then Y is compact.

Corollary 4.27. Locally compact is an hereditary property.

Theorem 4.28. A locally compact, Hausdorff space is 0-dimensional iff it is totally discon-

nected.

Proof. It suffices to prove that a locally compact, totally disconnected Hausdorff space is

0-dimensional.

Assume A is a closed set in X, where x /∈ A. Let U be an open set with compact closure

such that x ∈ U ⊆ U ⊆ Ac. For each p ∈ U \ U , let Vp be a clopen subset of U containing

x but not p. The sets X \ Vp form an open cover of U \ U so a finite subcover exists ,

say corresponding to the points p1, ..., pn. Let V := Vp1 ∩ · · · ∩ Vpn . Then V is clopen in

U containing x and disjoint from U \ U . But then V ⊂ U and hence is a clopen set in X

containing x and disjoint from A. We conclude that X is 0-dimensional. �

13X is T1 iff for every x 6= y in X there is an open set containing x but not y.
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5. 08.12.05

Proposition 5.1. NN has a countable base consisting of clopen sets.

Proof.
{
{(n1, . . . , nk)} × NN

∣∣∣n1, . . . , nk, k ∈ N
}

is a countable base for NN (Recall Example

2.14). The complement of a base set {(n1, . . . , nk)} ×NN, is equal to the union of all sets of

the form {(m1, . . . ,mk)}×NN where exists i ≤ k such that mi 6= ni. This is a union of open

sets, hence open. Therefore {(m1, . . . ,mk)} × NN is also closed. �

B :=
{

(a, b) ∩ (R \ Q) | a, b ∈ Q
}

=
{

[a, b] ∩ (R \ Q) | a, b ∈ Q
}

is a countable family of

clopen sets, admitting a base to R\Q. Applying 2.29, we have another proof to Proposition

5.1.

Definition 5.2. Whenever 〈X,O〉 is a topological space whose topology O is a metric

topology14 (generated by some metric ρ), we say that 〈X,O〉 is a metrizable topological

space.

In this case we can say that the metric is compatible with the topology.

Lemma 5.3. Every metric ρ on a set X is equivalent to a bounded metric.15

Proof. There are two standard ways of replacing ρ by a bounded metric: define new functions

ρ1 and ρ2 on X ×X by

ρ1(x, y) := min{1, ρ(x, y)}

ρ2(x, y) :=
ρ(x, y)

1 + ρ(x, y)

We will show that ρ1 is indeed a metric on X, generating the same topology as ρ does. The

reader may verify the same for ρ2.

ρ1 is a metric:

• ρ1(x, y) = min{1, ρ(x, y)} ≥ 0 since ρ(x, y) ≥ 0.

• ρ1(x, y) = 0 iff ρ(x, y) = 0 and this occur iff x = y.

• ρ1(x, z) = min{1, ρ(x, z)} ≤ min{1, ρ(x, y)+ρ(y, z)} ≤ min{1, ρ(x, y)}+min{1, ρ(y, z)} =

ρ1(x, y) + ρ1(y, z)

ρ1 generates the same topology as ρ does: on one hand, for some d > 0, Bρ1d (x) ⊇
Bρmin {1,d}(x). On the other hand, for some d < 1, Bρ1d (x) = Bρd(x) (where Bρ1d (x) for example

is the set {y ∈ X | ρ1(x, y) < d}). �

Theorem 5.4. A product space
∏

n∈NXn is metrizable iff each space Xn is metrizable.

14Open balls generated by any metric is always a topology base.
15Two metrics on a set are equivalent if they generate the same topology.
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Proof. (⇒) Each Xn is homeomorphic to a subspace of the product space, hence metrizable.

(⇐) Let 〈〈Xn, ρn〉 | n ∈ N〉 be a family of metric spaces with Im(ρn) ⊆ [0, 1] for all n ∈ N.

Define ρ on X :=
∏
Xi as follows: for x = (x1, x2, ...) and y = (y1, y2, ...)

ρ(x, y) :=
∑
i∈N

ρi(xi, yi)

2i
.

It is easily verified to be a metric. We will show that it gives the product topology in X.

Pick x = (x1, x2, ...) ∈ X and assume Bx ⊆ X is an open set containing x. We may assume

that Bx is the is of the following form:

Bx = Bε1(x1)× · · · × Bεn(xn)×
∏
k>n

Xk.

where Bεi
(xi) = {y ∈ Xi | ρi(y, xi) < εi} for all relevant i.

Put ε := min
(
ε1
2
, ..., εn

2n

)
. Now, if ρ(x, y) < ε, then ρi(xi, yi) < εi for all i ∈ N, so apparently

Bε(x) ⊂ Bx. Thus the product topology on X is weaker that the topology induced by ρ. On

the other hand, given ε > 0, we can choose N large enough that
∑

i≥N+1
1
2i < ε/2. Then

it is easily verified that B ε
2N

(x1) × · · · × B ε
2N

(xN) ×
∏

k>N Xk ⊂ Bε(x), hence, the topology

induced by ρ is weaker the the product topology. �

Corollary 5.5. NN is a metric-space.

Proposition 5.6. NN is a complete metric space.

Proof. For f, g ∈ NN, denote by N(f, g) := min{n ∈ N | f(n) 6= g(n)}. Now, define

ρ(f, g) := 1
N(f,g)

. As in the proof of Theorem 5.4, ρ is a metric that is compatible with the

usual product topology of NN.

Assume that {fn}n∈N is a Cauchy sequence. For K ∈ N, there exists NK ∈ N such that

d(fl, fm) < 1/K for all l,m ≥ NK . By definition of ρ this means that fl(n) = fm(n) for all

l,m ≥ Nk and n ≤ K.

Define f ∈ NN as follows: for every n ∈ N define f(n) := fNn(n). Obviously, d(fn, f)→ 0

as n→∞, concluding that NN is complete. �

Corollary 5.7. NN is a Baire space.

Notice that if a space is locally compact, then it is also a Baire space, this is essentially

due to Lemma 3.13 and Theorem 3.16.

Now, Since R is locally compact, and NN is homeomorphic to R \ Q,16 we know that NN

is also locally compact.17 This gives another proof for the preceding Corollary.

16homeomorphic, not isometric.
17Recall Corollary 4.27.
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Definition 5.8. Suppose 〈X,O〉 is a topological space. A family of open sets U ⊆ O is a

γ-cover iff U is infinite, and for all x ∈ X, {U ∈ U | x 6∈ U} is finite.

Thus, for instance, {(−n, n) | n ∈ N} is a γ-cover of R.

Observation 5.9. If U is a γ-cover of some space 〈X,O〉, then any infinite subset V ⊆ U
is a γ-cover.

In particular, any γ-cover contains a countable γ-cover.

Observation 5.10. Suppose U = {Un | n ∈ N} is an open cover of some space 〈X,O〉, then

either U contains a finite subcover, or that V := {
⋃
m≤n Un | n ∈ N} is a γ-cover of X.

Proof. If U does not contain a finite subcover, then V is infinite, and is clearly a γ-cover. �

Definition 5.11. For a topological space 〈X,O〉 denoteO := {U ⊆ O | U is an open cover of X}
and Γ := {V ⊆ O | V is an open γ-cover of X}.

Definition 5.12 (Hurewicz). A space 〈X,O〉 satisfies Hurewicz’s property or Ufin(O,Γ) iff

for any sequence of open covers of X, 〈Un | n ∈ N〉, each do not contain a finite subcover,

there exists some 〈Fn ∈ [Un]<ω | n ∈ N〉, such that {
⋃
Fn | n ∈ N} forms a γ-cover of X.

Observation 5.13. Ufin(O,Γ) is a topological property and there also exists an analogue of

Observation 1.31 for Ufin(O,Γ).

Proof. Essentially the same proofs of 2.1 and 1.31. �

To compare the definition of Ufin(O,Γ) with Sfin(O,O) (Definition 1.26), it is evident

that the left hand side set (O in both cases) is the requirement that Un ∈ O for all n ∈ N.

Now, for the right hand side, in the first case we need to generate a γ-cover, that is, a

member of Γ, while, on the other, we need to generate an open cover, that is, a member of

O. The generation is always based at some finite sets 〈Fn ∈ [Un]<ω | n ∈ N〉, where S ”says”

that the object is obtained by taking
⋃
n∈NFn, and U says that the object is obtained by

considering {
⋃
Fn | n ∈ N}.

Observation 5.14. X |= Sfin(O,Γ) implies that any open cover of X contains a γ-cover.

Consequently, no topological space X satisfies Sfin(O,Γ).

Proof. For an open cover U , consider 〈Un ∈ O | n ∈ N〉 where Un := U for all n ∈ N. By the

hypothesis, there exists 〈Fn ∈ [Un]<ω | n ∈ N〉 such that
⋃
n∈NFn ⊆ U is a γ-cover.

To see the second assertion, take U := {X}. �

Observation 5.15. Ufin(O,Γ)⇒ Sfin(O,O).
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Proof. We assume a topological space 〈X,O〉 and 〈Un ∈ O | n ∈ N〉. By the hypothesis,

there exists 〈Fn ∈ [Un]<ω | n ∈ N〉 such that {
⋃
Fn | n ∈ N} ∈ Γ.

We claim that
⋃
n∈NFn covers X. Indeed, since {

⋃
Fn | n ∈ N} covers X, we have:

X ⊆
⋃
n∈N

⋃
Fn =

⋃⋃
n∈N

Fn.

�

We can now obtain the result of Lemma 1.29 as an application of the preceding together

with the following.

Lemma 5.16. If 〈X,O〉 is a σ-compact topological space, then X |= Ufin(O,Γ).

Proof. Suppose 〈Kn | n ∈ N〉 is an increasing sequence of compact subspaces of X, whose

union is X, and 〈Un ∈ O | n ∈ N〉, each do not contain a finite subcover of X. By

compactness of each factor, there exists 〈Fn ∈ [Un]<ω | n ∈ N〉 such that Kn ⊆
⋃
Fn for all

n ∈ N. Finally, since 〈Kn | n ∈ N〉 ↗ X, we conclude that {
⋃
Fn | n ∈ N} is a γ-cover of X

(it is infinite because each Un does not contain a finite subcover). �

Conjecture 5.17 (Hurewicz). Ufin(O,Γ) is equivalent to σ-compactness.

The reader might want to compare the above with Conjecture 1.30. To continue the

research, we need the following reduction theorem, an analogue of Theorem 4.10.

Theorem 5.18 (Hurewicz). For all X ⊆ R, TFAE:

• X |= Ufin(O,Γ).

• Any continuous image of X into NN is ≤∗-bounded.

Proof. We omit the proof. Instead, we prove the following two propositions. �

Theorem 5.19. If 〈X,O〉 is a topological space and X |= Ufin(O,Γ), then any continuous

image of X into NN is ≤∗-bounded.

Proof. By Observation 5.13, we may assume that X ⊆ NN and X |= Ufin(O,Γ). Fix n ∈ N.

Put Un := {(n, k)↑ | k ∈ N}. Evidently, 〈Un | n ∈ N〉 ∈ O, so let 〈Fn ∈ [Un]<ω | n ∈ N〉
witness Ufin(O,Γ). Define g : N→ N. For n ∈ N, let g(n) := 1+max{k ∈ N | (n, k)↑ ∈ Fn}.

To see that X ⊆ {g}, we pick f ∈ X and show that f ≤∗ g.

Since {
⋃
Fn | n ∈ N} ∈ Γ, there exists some N ∈ N, such that f ∈

⋃
Fn for all n ≥ N ,

that is, f(n) ≤ g(n) for all n ≥ N , and we are done. �

Theorem 5.20 (Rec law). Suppose 〈X,O〉 is a topological space that has a base B which is

countable and composed only of clopen sets.

If any continuous image of X into NN is ≤∗-boudned, then X |= Ufin(O,Γ).
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Proof. By Observation 5.13, we assume a family of open covers of X, 〈Un ⊆ B | n ∈ N〉,
each do not contain a finite subcover. Since B is countable, there exists an enumeration

Un = {Um
n | m ∈ N} for all n ∈ N. We may also assume that members of Un are mutually-

disjoint for all n ∈ N, thus, for all x ∈ X, there is a unique fx ∈ NN such that x ∈ U fx(n)
n for

all n ∈ N. Finally, let ψ : X → NN be the map x 7→ fx.

Since ψ is continuous, we may pick g ∈ NN witnessing that ψ[X] is ≤∗-boudned. For all

n ∈ N, put Fn := {U1
n, .., U

g(n)
n }. To see that {

⋃
Fn | n ∈ N} is a γ-cover, fix x ∈ X. By

definition of g, there exists some N ∈ N such that fx(n) ≤ g(n) for all n ≥ N , and hence,

x ∈
⋃
Fn for all n > N . As usual, {

⋃
Fn | n ∈ N} is infinite because each Un does not

contain a finite subcover. �

Corollary 5.21. If X ∈ [R]<b, then X |= Ufin(O,Γ).

Proof. By (⇐) of Theorem 5.18. �

The next is similar to Corollary 4.19.

Corollary 5.22. Any uncountable X ∈ [R]<b is a counter-example to Hurewicz’s conjecture.

In particular, Hurewicz’s conjecture 5.17 is consistently false.

Proof. Suppose b > ℵ1 (this assumption is consistent) and X ∈ [R]<b is uncountable. If X

was σ-compact, then by Lemma 3.23, it had contained a perfect subset and by Lemma 3.26,

X had to contained a set of size c, contradicting |X| < b ≤ c. �

Observation 5.23. Consistently, there exists X ⊆ NN such that:

(a) X |= Sfin(O,O),

(b) X 6|= Ufin(O,Γ) (and in particular, X is not σ-compact).

Thus, consistently: Menger’s conjecture 1.30 has a counter-example already inside NN, and

Observation 5.14 cannot be improved.

Proof. Put J := {Y ⊆ NN | Y is meager }. By Corollary 5.7, J is a proper ideal. Assume

c = ℵ1 (this is consistent), or even the weaker assumption that cov(J ) = cof(J ).

For X := A, the set given by Theorem 3.7 by taking I = J , the same argument of the

proof of Claim 3.25 shows that A is cov(J )-concentrated on one of its countable (dense)

subsets. Now, since Ib ⊆ J , we have cov(J ) ≤ cov(Ib) = d. Thus, we noticed that there

exists D ∈ [X]ℵ0 such that X is d-concentrated at D, and hence X |= Sfin(O,O).

To see that X 6|= Ufin(O,Γ), notice that X 6∈ J implies X 6∈ Ib and recall Theorem

5.19. �

With the notation the above proof, it is very interesting to notice that even if c = ℵ1 (and

hence b = d), then still, somehow, the diagonalization process of Theorem 3.7 will generate

here X ⊆ [NN] (of cardinality b = d), which is ≤∗-unbounded, but not ≤∗-dominating.
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Definition 5.24. A function f : X → Y between two topological spaces is a Borel function

iff the preimage of an open set (in Y ) is Borel (in X).

Thus, Borel function is a weakening of continuous function.

Theorem 5.25 (Kuratowski). If S ⊆ [0, 1] ⊆ R and f : S → NN is a Borel function, then

there exists an extension g : [0, 1]→ NN such that g is a Borel function and g � S = f .

Theorem 5.26 (Luzin). If f : [0, 1] → NN is a Borel function, then for every ε > 0, there

exists some closed subset F ⊆ [0, 1] such that f � F is continuous and F is of Lebesgue

measure ≥ 1− ε.

Proof. It suffices to assume that f is measurable and Rng(f) is a topological space with a

countable basis {Bi | i ∈ N}.
Fix ε > 0. Fix i ∈ N. Since f is measurable, f−1[Bi] is a measurable set, and we may

pick an open set Gi ⊂ [0, 1] and a closed set Fi ⊂ [0, 1] such that Fi ⊂ f−1[Bi] ⊂ Gi, and

the Lebesgue measure of Gi \ Fi is at most ε/2i.18

G :=
⋃
i∈N(Gi \Fi) is open and of Lesbegue measure smaller than ε. Denote F := GC , G’s

complement in [0, 1]. Now, for all i ∈ N, F ∩Gi = F ∩Fi, implying that F ∩f−1[Bi] = F ∩Gi

is open in F , meaning that f is continuous on F . �

The next is similar to Theorem 3.24.

Theorem 5.27. A Sierpinski subset of [0, 1] is a counter-example to Hurewicz’s conjecture.

In particular, Hurewicz’s conjecture 5.17 is consistently false.

Proof. Let S ⊆ [0, 1] be a Sierpinski set. The consistency of existence of such set follows,

e.g., from c = ℵ1 and the proof of Corollary 3.8 applied to N[0,1] instead of to N .

Claim 5.28. S is not σ-compact.

Proof. If S was σ-compact, then by Lemma 3.23, it had contained a perfect subset and by

Lemma 3.26, S had to contain a null set of size c, contradicting the fact that S is Sierpinski

set. �

We now use Theorem 5.18 to prove that S |= Ufin(O,Γ).

Claim 5.29. Assume ψ : S → NN is a Borel function, then ψ[S] ∈ Ib.

18One of the many equivalent ways to define a measurable set is the following: A ⊂ R is measurable iff for
every ε > 0 there exist an open set G and a closed set F such that F ⊂ A ⊂ G and the Lebesgue measure
of G \ F is not more than ε.
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Proof. Let ϕ : [0, 1] → NN be an extension of ψ given by Theorem 5.25. Let 〈Cn ⊆ [0, 1] |
n ∈ N〉 be like in Theorem 5.26 applied to ϕ, with µ(Cn) > 1− 1

n+1
for all n ∈ N.

For n ∈ N, the choice of Cn implies that ϕ[Cn] is compact. It follows ϕ[
⋃
n∈NCn] =⋃

n∈N ϕ[Cn] is σ-compact, and in particular, ψ[S ∩
⋃
n∈NCn] ∈ Ib. (Recall Lemma 4.7.)

We are left with showing that ψ[S \
⋃
n∈NCn] ∈ Ib, but this is trivial, because

⋃
n∈NCn is

of measure 1 and S is a Sierpinski set, so, S \
⋃
n∈NCn is countable. �

�

With the notation of the preceding proof, notice that it suffices to assume that S has the

property that any intersection of S with a null set is of cardinality < b, that is, the proof

can be carried out flawlessly had we assumed that S ⊆ [0, 1] is the set given by Theorem

3.7, whenever cov(N ) = cof(N ) = b.

Definition 5.30. A compactification of a space X is a pair (K,h), where K is compact,

h : X → h(X) ⊂ K is an homeomorphism, and h(X) = K

We will sometimes simply say that K is a compactification of X. In many cases, h will

be an inclusion map, so that X ⊂ K.

Definition 5.31. A space 〈X,O〉 is locally-compact iff for all x ∈ X, there exists an open

U ⊆ X, with x ∈ U and U compact.

Definition 5.32 (Alexandrov compactification). Let 〈X,O〉 be locally-compact, noncom-

pact Hausdorff space, and p /∈ X. Define 〈X∗, O∗〉 by letting X∗ := X ∪ {p} and:

O∗ := O ∪
{
{p} ∪ (X \K) | K ⊆ X is compact

}
.

We call X∗ the one-point compactification of X.

Observations:

• Verifying that 〈X∗, O∗〉 is indeed a topological space is easy.

• X∗ is compact. Assume {Us}s∈S is an open cover of X∗.

It follows that there exist some sp ∈ S with p ∈ Usp , that is, Usp = {p} ∪ (X \K)

where K is compact in X. Now, {Us}s∈S\sp is an open cover of K, so there is a finite

subcover {Us1 , ..., Usn}. We conclude that {Usp , Us1 , ..., Usn} is a cover of X∗.

• X is open in X∗ since X is open in itself.

• X is dense in X∗. Showing that {p} is not open will do. Assume that {p} is open,

meaning {p} = {p} ∪ (X \ X) where X is compact. A contradiction, since X is

noncompact.

• X∗ is Hausdorff. Consider two distinct points x, x′ in X∗. If both are in X then we

are done since X is Hausdorff. So, assume x′ = p. X is locally compact, that is, there
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is an open set x ∈ Ux such that Ux is compact in X, therefore Vp := {p} ∪ (X \ Ux)
is open and Ux ∩ Vp = ∅.

Example 5.33. (1) Consider the real line R, and define R∗ := R ∪ {∞} with the topology

as described. Now, this is actually a space homeomorphic to S1, the unit sphere in R2, which

is obviously compact.

(2) Actually, the one-point compactification of Rn is Sn.

Theorem 5.34 (Alexander). Assume 〈X,O〉 is a topological space and S is some subbase

for the topology on X.

If every cover of X with elements of S has a finite subcover, then X is compact.

Proof. For the sake of the proof, we shall use the following notation:

A collection U of open sets is B iff it is not a cover. It is Bfin iff it does not have a finite

subcover. We say that a Bfin collection U is maximal iff there exists some open set U such

that U ∪ {U} is not Bfin.

Evidently, B⇒ Bfin, and 〈X,O〉 is compact iff Bfin ⇒ B for all U ⊆ O.

Lemma 5.35. Every Bfin collection can be extended to a maximal Bfin collection.

Proof. Assume U0 is Bfin. Let A := {U | U0 ⊆ U ⊆ O is Bfin}. A is clearly non-empty.

Naturally, 〈A,⊆〉 is a partially ordered-set. Now, recall Zorn’s Lemma:

Lemma 5.36 (Zorn). If 〈P,≤〉 is a non-empty poset with the property:

(?) For all C ⊆ P such that 〈C,≤〉 is linearly-ordered, there exists some y ∈ P such that

x ≤ y for all x ∈ C.

Then, 〈P,≤〉 contains a maximal element m, that is, m 6< x for all x ∈ P .

Clearly, to complete the proof, it suffices to show that the hypothesis of Zorn’s Lemma

holds. Let {Ui}i∈I ⊆ A (where I is some index set) be a chain, and define U :=
⋃
i∈I Ui.

Assume now that U is not Bfin, that is, there are {Uk}k≤n ⊂ U such that X =
⋃
k≤n Uk.

Since there is an increasing sequence 〈ik ∈ I | 1 ≤ k ≤ n〉 such that Uk ∈ Uik , we get that

Uin is Bfin. A contradiction. �

So, assume now that U is a maximal Bfin extension of U0.

Let J be an arbitrary index set. For all j ∈ J assume Vj /∈ U is an open set, then there are

{Ujk}k≤nj
all in U such that Vj ∪

⋃
k≤nj

Ukj
= X. Therefore

(⋂
j Vj

)
∪
(⋃

j

⋃
k≤nj

Uk

)
= X.

We conclude that there does not exist U ∈ U such that
⋂
j Vj ⊂ U , otherwise U would not

have been Bfin. Thus, if
⋂
j Vj ⊂ U for some U ∈ U , then there is j ∈ J with Vj ∈ U .

Define U ′ := U ∩ S. Let x ∈ U ∈ U . There are {Vj}j≤n ⊂ S such that x ∈
⋂
j≤n Vj ⊂ U ,

thus, there is j ≤ n such that Vj ∈ U , therefore Vj ∈ U ′. We conclude that
⋃
U ′ =

⋃
U .
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Now, assume X =
⋃
U , meaning X =

⋃
U ′, but, by the hypothesis, U ′ has a subcover for

X, therefore so does U , in contradiction to the fact that U is Bfin.

So, X 6=
⋃
U , that is, U is a B collection, in particular, U0 is a B collection, but we

assumed U0 is Bfin.

Since U0 is an arbitrary Bfin collection, we get that X is compact. �

Theorem 5.37 (Tychonoff). A nonempty product space is compact iff each factor space (in

the product) is compact.

Proof. (⇒) If the product space is nonempty, then the projection maps are all continuous (see

proposition 2.15) and onto, and since the continuous image of a compact space is compact,

the result follows.

(⇐) Assume {Xi}i∈I is a collection of compact spaces, and define X :=
∏

i∈I Xi. Consider

the canonical subbase to the topology of X, S := {π−1
i [U ] | i ∈ I, U ⊆ Xi is open}.

By Alexander’s theorem 5.34, it is sufficient to show that every Bfin collection U ⊆ S, is

also a B collection, so let us fix such U .

For all i ∈ I, put Ui := {U ⊆ Xi | π−1
i [U ] ∈ U}.

Lemma 5.38. For all i ∈ I, Ui is Bfin in Xi.

Proof. Assume that Ui is not Bfin inXi, then there are U1, .., Un ∈ Ui such that
⋃
k≤n Uk = Xi,

hence X = π−1
i [Xi] = π−1

i

[⋃
k≤n Uk

]
=
⋃
k≤n π

−1
i [Uk]. We conclude that U is Bfin. A

contradiction. �

Now, since Xi is compact, we must conclude that Ui is a B collection (for all i ∈ I),

meaning that there exist some xi ∈ Xi \
(⋃
Ui
)
.

Let x ∈ X be the only member in X satisfying πi(x) = xi for all i ∈ I.

Lemma 5.39. x /∈
⋃
A.

In particular, U is a B collection.

Proof. Assume x ∈
⋃
U , then there exists some U ∈ U such that x ∈ U , that is, there exists

some i ∈ I and Ui ⊆ XI such that x ∈ U = π−1
i [Ui]

Now, x ∈ π−1
i [Ui] iff xi = πi(x) ∈ Ui. This is a contradiction to the fact that xi /∈

⋃
Ui. �

�

It is worth mentioning that Tychonoff’s theorem 5.37 is equivalent to the Axiom of Choice

(the C of ZFC) which is equivalent to Zorn’s Lemma 5.36.

Theorem 5.40 (Scheepers-Just-Miller-Szeptycki). Hurewicz’s conjecture 5.17 is false.

We omit the original proof. Instead, in the next lecture we shall introduce an alternative,

simpler, proof due to Bartoszyński and Tsaban.
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6. 15.12.05

We regard the natural numbers as ordinals, that is:

0 := ∅, 1 := 0 ∪ {0} = {∅} , 2 := 1 ∪ {1} = {∅, {∅}}, n+ 1 := n ∪ {n}.

Let ω = {0, 1, 2, ..} be the collection of all natural numbers.

It is not hard to see that 〈ω,∈〉 is order isomorphic to 〈N, <〉 with the usual order. Now,

consider ω + 1 := ω ∪ {ω}.
〈ω + 1,∈〉 is an infinite linearly ordered set that has a maximal element, p, such that

〈ω + 1 \ {p},∈〉 is isomorphic to 〈N, <〉.

Definition 6.1. Let ω + 1 denote the one-point compactification of the discrete space ω.19

It is obvious that B :=
{
{n} | n ∈ ω

}
forms a basis to the discrete topology on ω.

Since A ⊆ ω is compact iff A is finite, we conclude that B̂ :=
{
{n}, (ω + 1) \ {0, .., n} |

n ∈ ω} forms a basis to the compact space ω + 1. We shall regard B̂ as the canonical base

for ω + 1.

Definition 6.2. Consider the Bartoszyński space, (ω+1)ω as the product space
∏

n∈ω(ω+1).

By Theorem 5.37, the space (ω + 1)ω is compact.

Definition 6.3. N↑N is the subspace of NN consisting only of strictly increasing functions:

N↑N := {f ∈ NN | n < m→ f(n) < f(m)}.

(ω + 1)↑ω is the following subspace of (ω + 1)ω:

(ω + 1)↑ω :=

{
f ∈ (ω + 1)ω

∣∣∣n < m→
(
f(n) < ω → f(n) < f(m)
f(n) = ω → f(m) = ω

)}
.

Define ω↑ω in the obvious fashion.

Lemma 6.4. The following spaces are homeomorphic:

(1) The Baire space, NN.

(2) N↑N;

(3) ω↑ω;

(4) ωω;

(5) R \Q.

19Recall Definition 5.32.
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Proof. Let’s see that NN is homeomorphic to N↑N. Take ψ : NN → N↑N such that ψ(f)(n) =∑n
k=1 f(k) for all f ∈ NN and n ∈ N.

ψ is an injection: Consider f1, f2 ∈ NN such that ψ(f1) = ψ(f2), that is, for all n ∈ N∑n
k=1 f1(k) =

∑n
k=1 f2(k). We get that f1(n) = f2(n) for all n ∈ N, thus f1 = f2.

Pick g ∈ N↑N, and consider the function f where f(1) := g(1) and f(n) := g(n)−g(n−1).

Now ψ(f) =
∑n

k=1 f(k) = g(n) which means that ψ is onto.

Now pick two close functions f1, f2 ∈ NN, that is, f1(n) = f2(n) for all n ≤ N for some

N ∈ N. We get that ψ(f1)(n) = ψ(f2)(n) for all n ≤ N , meaning that ψ(f1) and ψ(f2) are

close in N↑N. Therefore ψ is continuous.

In the same way we get that ψ is continuous, proving the necessary. �

Notice that the natural homeomorphisms between (1),(2),(3),(4), are all ≤∗-order-preserving,

thus, the image of a b-scale in NN under this homeomorphism would be a b-scale in N↑N,

etc’..

Definition 6.5. Equip P(N) with a topology by letting O ⊆ P(N) be open iff

{f ∈ {0, 1}N | f−1[{1}] ∈ O}

is an open subset of the Cantor space {0, 1}N.

We already know how base sets in the Cantor space look like. They are exactly the sets

of the form (ε1, ..., εk) × {0, 1}N, where k ∈ N, ε1, ..., εk ∈ {0, 1}. We get that base set

for the topology of P(N) is of the form {B ⊆ N | B ∩ {1, .., d} = {n1, .., nk}}, for some

d, k, n1, ..., nk ∈ N.

¿From this it is easily seen that P(N) is homeomorphic to the Cantor space. A nice

conclusion is that P(N) is metric.

Lemma 6.6. The following spaces are homeomorphic:

(1) The Bartoszyński space, (ω + 1)ω;

(2) (ω + 1)↑ω;

(3) P(N);

(4) The Cantor space, {0, 1}N;

(5) The Cantor set, C ⊆ [0, 1].

Proof. To see that (ω+ 1)↑ω is homeomorphic to P(N), take ψ : (ω+ 1)↑ω → P(N) such that

for all f ∈ (ω + 1)↑ω:

ψ(f) := {f(n) + 1 | (n ∈ ω) ∧ (f(n) < ω)}.

It is easy to se that ψ is a bijection. Proving that it is open and continuous is similar to

the proof of 6.4.
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�

From now on, whenever useful, we may think of subspaces of the Bartoszyński space as

subspaces of the reals.

Definition 6.7. For f ∈ {0, 1}N, let (f ⊕ 1) ∈ {0, 1}N be such that (f ⊕ 1)(n) = 1 − f(n)

for all n < ω. For A ⊆ N, let Ac := N \ A.

It is obvious that A 7→ Ac and f 7→ (f ⊕ 1) are automorphisms of P(N) and {0, 1}N,

respectively.

Definition 6.8. For ψ : (ω+ 1)↑ω → P(N) of theorem 6.6, and each f ∈ (ω+ 1)↑ω, denote :

f c := ψ−1(ψ(f)c).

Observation 6.9. f 7→ f c (for all f ∈ (ω + 1)↑ω) is an automorphism of (ω + 1)↑ω.

Definition 6.10. For all n < ω and σ : n→ ω, let qσ ∈ (ω + 1)ω be such that:

qσ � n = σ and qσ(m) = ω for all m ≥ n.

Clearly, if σ is strictly increasing, then qσ is in (ω + 1)↑ω.

Definition 6.11. Denote ISeq(ω) := {σ : n→ ω | n < ω, σ is strictly increasing }.

Lemma 6.12. Q := {qσ | σ ∈ ISeq(ω)} is a countable dense subset of (ω + 1)↑ω.

Proof. It suffices to show that U ∩Q 6= ∅ for all non-empty open U ⊆ (ω+ 1)↑ω of the form:

U = (ω + 1)↑ω ∩ π−1
0 [U1] ∩ ... ∩ π−1

n [Un],

where n < ω and {U0, .., Un} ∈ [B̂]<ω.20

It is straight-forward to inductively define σ : n+1→ ω such that σ(k) ∈ Uk for all k ≤ n,

and σ ∈ ISeq(ω). It follows that qσ ∈ U and we are done. �

Notice that the image of Q under the homeomorphism ψ from Lemma 6.6, is [N]<ω.

Next thing we do, is improving Observation 5.23 to the following.

Theorem 6.13 (Tsaban-Zdomskyy). There exists X ⊆ ω↑ω such that:

(a) X |= Sfin(O,O),

(b) X 6|= Ufin(O,Γ) (and in particular, X is not σ-compact).

Thus, Menger’s conjecture 1.30 has a counter-example inside NN, and Sfin(O,O) 6= Ufin(O,Γ).

20Here, πk is the k’th projection from (ω + 1)↑ω to ω + 1, and B̂ is the canonical base of ω + 1 discussed
after Definition 6.1.



40 ASSAF RINOT AND ROY TEPER

Proof by Rinot. If b < d, then pick a ≤∗-unbounded family X ∈ [ω↑ω]b.

By Theorems 4.12,5.1, X |= Sfin(O,O) and by Theorem 5.19, X 6|= Ufin(O,Γ).

Assume now b = d. Put A := {f ∈ ω↑ω | f c ∈ ω↑ω} = {f ∈ ω↑ω | ω \ Im(f) is infinite }.21

Pick a dominating family D ∈ [ω↑ω]d. By b = d, we may apply the proof of Lemma 1.11

and yield a strictly ≤∗-increasing sequence 〈fα ∈ A | α < b〉 such that ω↑ω ⊆ {fα | α < b}.
We now define a sequence {gα ∈ A | α < b} by induction on α < b. Let g0 := f0, and

assume {gβ ∈ A | β < α} had already been defined.

Since B := {gβ, fβ, f cβ | β < α} ⊆ ω↑ω is of cardinality < b, we may find some h ∈ ω↑ω
such that B ⊆ {h}. Now, by Corollary 4.5, C1 := {f ∈ ω↑ω | f 6≤∗ h} is co-meager. It follows

from Observation 6.9 that C2 := {f c | f ∈ ω↑ω, f 6≤∗ h} ⊆ (ω + 1)↑ω is co-meager. Now,

since (ω + 1)↑ω = ω↑ω ∪Q and Q is meager, C3 := C2 \Q = {f ∈ ω↑ω | f c ∈ ω↑ω, f c 6≤∗ h} is

co-meager, so let us pick gα ∈ C1 ∩ C3. End of the construction.

Claim 6.14. For all h ∈ ω↑ω:

• |{gα | α < b} ∩ {h}| < b

• |{gcα | α < b} ∩ {h}| < b

Proof. Pick h ∈ ω↑ω. By definition of our strictly increasing scale, there exists some δ < b

such that h ≤∗ fα whenever δ < α < b. Assume δ < α < b, then by the choice of gα,

{n < ω | fα(n) ≤ gα(n)} and {n < ω | fα(n) ≤ gcα(n)} are both infinite. In particular,

gα 6≤∗ h and gcα 6≤∗ h, thus:

max
{∣∣{gα | α < b} ∩ {h}

∣∣, ∣∣{gα | α < b} ∩ {h}
∣∣} ≤ |δ| < b.

�

Put Y := {gα | α < b} ∪Q and let X be the image of Y under the complement operator

of Observation 6.9. It is obvious that X ⊆ ω↑ω. Since X and Y are homeomorphic, we are

left with showing that Y |= Sfin(O,O) and X 6|= Ufin(O,Γ).

To see that Y |= Sfin(O,O), notice that the same proof of Theorem 4.20 shows that Y is

b-concentrated at Q.22 Finally, by the preceding claim, X is ≤∗-unbounded. It follows from

Theorem 5.19 that X 6|= Ufin(O,Γ). �

Corollary 6.15. There exists B ∈ [NN]b which is ≤∗-unbounded but not ≤∗-dominating.

Further more, B satisfies:

(a) For all h ∈ NN, |B ∩ {h}| < b.

(b) For any continuous function ψ : NN → NN, ψ[B] is not ≤∗-dominating.

21Here, f c denotes the image of f under the homeomorphism defined in Observation 6.9.
22We simply replaced the compact space [0, 1] with the space (ω + 1)↑ω. Cf the proof of Claim 6.18.
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Proof. If b < d, then just pick a b-scale. Assume now b = d, and consider X of the preceding

theorem, then, (a) is satisfied by (the second item of) claim 6.14, and (b) is satisfied by

X |= Sfin(O,O) and Theorem 4.11. �

We now show that there is a very high price to pay for functions to be continuous at Q.

Lemma 6.16 (Bartoszyński). Suppose ψ : (ω + 1)↑ω → ωω is continuous at Q.

Then there exists an element g ∈ ωω such that for all x ∈ ω↑ω and n < ω:

x(n) > g(n) =⇒ ψ(x)(n) ≤ g(n)

Proof. Fix n < ω. For σ ∈ ISeq(ω) with dom(σ) = n, put kσ := ψ(qσ)(n). Since (n, kσ)↑ =

{f ∈ ωω | f(n) = kσ} is open, ψ(qσ) ∈ (n, kσ)↑, and ψ is continuous on qσ ∈ Q, we conclude

that ψ−1[(n, kσ)↑] contains an open neighberhood of qσ.

It follows that for all σ ∈ ISeq(ω) with dom(σ) = n, we may fix a base open Iσ ⊆ (ω+1)↑ω

such that qσ ∈ Iσ and ψ(x)(n) = ψ(qσ)(n) for all x ∈ Iσ.

For A ⊆ (ω + 1)↑ω, denote A � n := {x � n | x ∈ A}.
Since

{
Iσ � n | σ ∈ ISeq(ω), dom(σ) ≤ n

}
is an open cover of the compact product space∏

k<n(ω + 1), we may find Fn ∈ [ISeq(ω)]<ω such that dom(σ) ≤ n for all σ ∈ Fn and∏
k<n(ω + 1) =

⋃
σ∈Fn

(Iσ � n).

Claim 6.17. For all σ ∈ Fn, there exists Nσ < ω such that for all x ∈ (ω + 1)↑ω:(
(x � n) ∈ (Iσ � n) and x(n) > Nσ

)
=⇒ x ∈ Iσ.

Proof. Fix σ ∈ Fn. Since Iσ is base open, there exists a family 〈Um ∈ B̂ | m < ω〉 such that

Iσ =
∏

m<ω Um. Further more, we may find a minimal M < ω such and Um = ω + 1 for all

m ≥ M . Now, if M ≤ n, then for all x ∈ (ω + 1)↑ω with (x � n) ∈ (Iσ � n), we have x ∈ Iσ,

thus, Nσ is arbitrary. Assume M > n.

Since qσ ∈ Iσ ∈ B̂ and qσ(m) = ω for all m ≥ n, we know that for all m satisfying

n ≤ m < M , there exists a km < ω such that Um = (ω + 1) \ km.

Put Nσ := max{k < ω | ∃m < M
(
Um = (ω + 1) \ k

)
}. It follows that if x ∈ ω↑ω,

(x � n) ∈ (Iσ � n), and x(n) > Nσ, then x ∈ Iσ. (Recall that x is increasing!) �

Finally, define g ∈ ωω by g(n) := max{Nσ, ψ(qσ(n)) | σ ∈ Fn} for all n < ω.

To see that g works, pick x ∈ ω↑ω and n < ω with x(n) > g(n).

Since
∏

k<n(ω + 1) =
⋃
σ∈Fn

(Iσ � n), there exists σ ∈ Fn such that (x � n) ∈ (Iσ � n).

Now, since x(n) > g(n) ≥ Nσ, we have that x ∈ Iσ. Finally, since x ∈ Iσ, we conclude that

ψ(x)(n) = ψ(qσ)(n) ≤ g(n). �

Lemma 6.18. Pick a b-scale, 〈fα ∈ ω↑ω | α < b〉.
Put H := B ∪Q ⊆ (ω + 1)↑ω, where B := {fα | α < b}. Then H is b-concentrated at Q.
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Proof. Suppose U ⊆ (ω+1)↑ω is open containing Q. Since (ω+1)↑ω = ω↑ω∪Q and (ω+1)↑ω

is compact, (ω + 1)↑ω \ U is a compact subspace of ωω.

It follows from Lemma 4.3 that there exists some g ∈ ωω such that (ω + 1)↑ω \ U ⊆ {g}.
In particular, there exists δ < b such that H \ U = (B ∪Q) \ U ⊆ {fα | α < δ}. �

Theorem 6.19. Pick a b-scale, 〈fα ∈ ω↑ω | α < b〉, then H := B ∪Q is a counter-example

to Hurewicz’s conjecture 5.17, where B := {fα | α < b}.

Proof. By Lemma 6.6 and the preceding, H ⊆ (ω + 1)↑ω is homeomorphic to a set of reals

which is b-concentrated at one of its countable subsets. It follows from Lemma 3.23 and

Theorem 4.16, that H is not σ-compact.

To see that H |= Ufin(O,Γ), we use Theorem 5.18. Assume ψ : H → ωω is continuous.

Since the homeomorphism discussed in Lemma 6.4 is order-preserving, we may also assume

that Im(ψ) ⊆ ω↑ω. Let g ∈ ωω be like in Lemma 6.16.

Since B is unbounded, there exists some α < b such that fα 6≤∗ g, so let us pick a ∈ ω↑ω
such that g(a(n)) < fα(a(n)) for all n < ω.

It follows that for all n < ω, ψ(fα(n)) ≤ ψ(fα)(a(n)) ≤ h(n) where h := g ◦ a.

Now, if β > α, then there exists m < ω such that fα(n) ≤ fβ(n) whenever m < n < ω,

hence, g(a(n)) < fα(a(n)) ≤ fβ(a(n)) and ψ(fβ(n)) ≤ h(n) for all but finitely many n’s.

We conclude that ψ[{fβ | β ≥ α}] ⊆ {h}, hence, ψ[{fβ | β ≥ α}] ∈ Ib. Finally, since

|{fγ | γ < α}| < b, we have that ψ[{fγ | γ < α}] ∈ Ib and Im(ψ) ∈ Ib. �

A curious reader might ask himself what happens had we replaced the b-scale in the

preceding theorem with B of Corollary 6.15. A suspicious reader who compare Y of theorem

6.13 with H of the preceding theorem, might even belive he found a contradiction.

However, there is an important difference between the b-scale and our B, and this lies

in the fact that the b-scale is linearly-ordered by ≤∗, while B is not. It is evident that the

usage of linearity has a crucial appearance at the end of the proof of the preceding.
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7. 29.12.05

Definition 7.1. A set A ⊂ R is of Lebesgue measure 0 if for every ε > 0 there is a family

of open intervals 〈In | n ∈ N〉 that covers A and
∑

n∈N |In| < ε.

Definition 7.2. A set A ⊂ R is of strong measure zero (or SMZ) iff for every sequence

〈εn | n ∈ N〉 there is a family of open intervals 〈In | n ∈ N〉 that covers A and |In| < εn for

every n ∈ N.

Proposition 7.3. SMZ =⇒ Lebesgue measure zero.

Proof. Assume the set A ⊂ R is of SMZ. Fix ε > 0. Consider the sequence 〈ε/2n | n ∈ N〉.
Since A is SMZ there is a family of open intervals 〈In|n ∈ N〉 that covers A and |In| < ε/2n

for all n ∈ N. Since
∑

n∈N ε/2
n = ε, we get that A is of Lebesgue measure zero. �

Observation 7.4. If A ⊆ R is countable, then A is SMZ.

Proof. Suppose A = {an ∈ R | n ∈ N} is countable, and 〈εn | n ∈ N〉 is a sequence of positive

reals. For n ∈ N, let In := (an − εn

4
, an + εn

4
) and observe that 〈In | n ∈ N〉 works. �

To see that SMZ is much stronger than measure zero, consider for example the Cantor set.

We have seen before that it is of measure zero. Is it SMZ? It is obvious that for the sequence

〈1/3n|n ∈ N〉, matching open interval cover the Cantor set. Just take I1 := (0, 1/3), I2 =

(6/9, 7/9), .... On the other hand, for the sequence 〈1/3n|n ∈ N, n > K ≥ 1〉, such family

of open intervals that covers the Cantor set can’t be obtained (think why?). Therefore it is

not SMZ.

Conjecture 7.5 (Borel, 1919). If A ⊆ R is SMZ, then A is countable.

Notice that in R, for some open interval (a, b) ⊂ R, |(a, b)| stands for the length (one

dimensional volume) of (a, b), or equivalently, its’ diameter. Is it the same in larger metric

spaces? Consider for example R2. The set [0, 1] ⊂ R2 is of Lebesgue measure (volume) zero,

but the sum of diameters of any open cover consisting with two dimensional ”boxes” is not

less than 1.23 The question arises is how to“properly” define SMZ in large metric spaces?

Here is the standard way.

Definition 7.6. Suppose 〈X, d〉 is a metric space.

A ⊆ X is a strongly null set iff for any sequence of positive reals, 〈εn | n ∈ N〉, there is a

partition {An | n ∈ N} such that A =
⋃
n∈NAn and Diam(An) < εn for all n ∈ N.

In the special case of strongly null sets in R, we shall keep call them SMZ.

23A box in R2 is a base set of the product topology, that is a product of open intervals in R
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Observation 7.7. If 〈X, d〉 is a discrete metric space, then A ⊆ X is strongly null iff A is

countable.

Lemma 7.8. A uniformly continuous image of a strongly null set is strongly null.

Proof. Let 〈X, ρX〉, 〈Y, ρY 〉 be metric spaces where X is strongly null, and let f : X → Y be

uniformly continuous onto Y .

Fix ε > 0. Since f is uniformly continuous, a δ > 0 exists, such that given an open ball

B ⊂ X with DiamρX
(B) < δ, we end up with DiamρY

(f [B]) < ε.

Now, consider some sequence 〈εn | n ∈ N〉. Implementing the last remark we get a

corresponding sequence 〈δn | n ∈ N〉. X is strongly null, hence there exist a cover consisting

of open balls 〈Bn ⊂ X | n ∈ N〉 where DiamρX
(Bn) < δn. For all n ∈ N, DiamρY

(f [Bn]) < εn.

Y = f [X] = f
[ ⋃
n∈N

Bn

]
⊆
⋃
n∈N

f [Bn] ⊆
⋃
n∈N

B′n

where B′n ⊂ Y are open balls of diameter less than εn such that f [Bn] ⊆ B′n. �

Definition 7.9. For a metric space 〈X, d〉, let SNX := {A ⊆ X | A is a strongly null set }.
In the special case of 〈R, | · |〉, we denote SN := SN R = {A ⊆ R | A is SMZ }.

Proposition 7.10. For any metric space 〈X, d〉, SNX is a σ-ideal.24

Proof. It is obvious that ∅ ∈ SNX .

Consider some A ∈ SNX , and let B ⊂ A. Fix 〈εn | n ∈ N〉, then since A ∈ SNX there is

a cover of A consisting of open set 〈Un | n ∈ N〉 with Diam(Un) < εn for all n ∈ N. Since

B ⊆
⋃
n∈N Un, we conclude that B ∈ SNX .

Finally, to see that SNX is σ-additive, assume 〈An ∈ SNX | n ∈ N〉, and fix 〈εn | n ∈ N〉.
Let

⊎
n∈N Jn be a partition of N where Jn is infinite for every n ∈ N.

Let n ∈ N. An ∈ SNX , therefore there is a cover consisting of open sets 〈Un,k | k ∈ Jn〉
such that Diam(Un,k) < εk for all k ∈ Jn.

By
⋃
n∈N

⋃
k∈N Un,k ⊇

⋃
n∈NAn, we conclude that

⋃
n∈NAn ∈ SNX . �

We have already seen that SN ⊆ N . We now show a nice connection between SMZ and

connectedness.

Claim 7.11. SMZ ⇒ 0-dimensional.

Proof. Assume A ∈ R is SMZ. Recalling Theorem 4.28, it is enough to show that A is totally

disconnected. Assume the contrary, that is, it happens that x ∈ I ⊂ A where I is connected

and I \ {x} 6= ∅. I is then an interval which means of positive measure, a contradiction to

the fact that A is null (Proposition 7.3). �

24A σ-ideal is an ideal closed to countable unions, i.e., add(SNX) ≥ ℵ1.
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We now reveal the combinatorics of SMZ.

Definition 7.12 (Rothberger). For k ∈ N, a space 〈X,O〉 satisfies Rothberger’s property or

Sk(O,O) iff for any family of open covers of X, 〈Un | n ∈ N〉, there exists some 〈Fn ∈ [Un]k |
n ∈ N〉, such that

⋃
n∈NFn covers X.

Observation 7.13. For a topological space 〈X,O〉, TFAE:

(a) X |= S1(O,O).

(b) X |= Sk(O,O) for some k ∈ N.

(c) X |= Sf (O,O) for some f ∈ NN, i.e., for any family of open covers of X, 〈Un | n ∈
N〉, there exists a family 〈Fn ∈ [Un]f(n) | n ∈ N〉, such that

⋃
n∈NFn

Proof. To see (c)⇒(a), fix f ∈ NN such that X |= Sf (O,O).

Pick an arbitrary partition 〈An ∈ [N]f(n) | n ∈ N〉 with
⊎
n∈NAn = N.

For all n ∈ N, let Vn := {
⋂

Im(g) | g ∈
∏

m∈An
Um}.25 Evidently, each Vn covers X.

Applying Sf (O,O) to 〈Vn | n ∈ N〉, we get a family 〈Fn ∈ [Un]f(n) | n ∈ N〉, such that⋃
n∈NFn covers X. Pick 〈Gn ∈ [

∏
m∈An

Um]f(n) | n ∈ N〉 such that Fn = {
⋂

Im(g) | g ∈ Gn}
for all n ∈ N. By |Gn| = f(n) = |An|, we may enumerate Gn = {gi ∈

∏
m∈An

Um | i ∈ An}.
In this notation, we get that

⋃
n∈NFn = {

⋂
Im(gi) | i ∈ N}.

Finally, since
⋂

Im gi ⊆ gi(i) ∈ Ui for all i ∈ N, we get that 〈gn(n) | n ∈ N〉 exemplifies

X |= S1(O,O). �

Observation 7.14. Assume 〈X, d〉 is a metric space.

For all Y ⊆ X, Y |= S1(O,O) implies that Y is strongly null.

Proof. Consider a family of positive reals 〈εn ∈ R | n ∈ N〉.
Fix a basis B for 〈X, d〉, and put Un := {U ∈ B | Diam(U) < εn} for each n ∈ N. By

applying S1(O,O) of Y to 〈Un | n ∈ N〉, we obtain a family 〈Un ∈ Un | n ∈ N〉 such that

Y ⊆
⋃
n∈N Un, and obviously, Diam(Un) < εn for all n ∈ N. �

Corollary 7.15. A Luzin set is an uncountable strongly null set.

In particular, Borel’s conjecture 7.5 is consistently false.

Proof. By Claim 3.25 and the preceding observation. �

Our reader might conjecture that Observation 7.14 can be improved and S1(O,O) is

actually equivalent to strongly null. However, this is not the case. By Proposition 7.10,

strongly null is an hereditary property, whereas we have the following.

Observation 7.16. Sfin(O,O) is non-hereditary.

25g ∈
∏

m∈An
Um means that dom(g) = An and g(m) ∈ Um for all m ∈ An.
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Proof. R is σ-compact, thus by Lemma 1.29, R |= Sfin(O,O). However, by Theorem 2.29

R \Q is homeomorphic to NN. It follows from Theorem 4.10 that R \Q 6|= Sfin(O,O). �

Observation 7.17. S1(O,O) is consistently non-hereditary.

Proof. Assume d = ℵ1. Consider M := ψ[D] ∪ (Q ∩ [0, 1]) of Theorem 4.20. Then M is

ℵ1-concentrated on the countable set Q∩ [0, 1], thus, M |= S1(O,O). However, By Theorem

4.10, ψ[D] does not even satisfy Sfin(O,O) (since ψ−1[ψ[D]] = D is dominating), not to

mention S1(O,O). �

It follows from Observation 4.8 that (d = ℵ1) =⇒ (d = cov(M)). It will soon be clear

that it suffices to assume d = cov(M) to conclude that ψ[D] ∪ (Q ∩ [0, 1]) |= S1(O,O).

Definition 7.18. A set X ⊆ NN is said to be guessed by g ∈ NN iff {n ∈ N | f(n) = g(n)}
is infinite for all f ∈ X.

Theorem 7.19. Suppose X ⊆ NN. If |X| < cov(M), then X can be guessed.

Proof. For all f ∈ X and k ∈ N, it is obvious that:

Af,k :=
{
g ∈ NN | ∃n ∈ N

(
(n > k) ∧ g(n) = f(n)

)}
is dense open. Clearly, any g ∈

⋂
f∈X

⋂
k∈NAf,k will do, so assume towards a contradiction

that
⋂
k∈N
⋂
f∈X Af,k = ∅. It follows that NN =

⋃
k∈N
⋃
f∈X Bf,k, where Bf,k := NN \Af,k are

nowhere dense sets. Identifying NN with R \Q, we get that:

R =
⋃
k∈N

⋃
f∈X

Bf,k ∪
⋃
q∈Q

{q}

is the union of |X| nowhere dense sets, contradicting |X| < cov(M). �

Theorem 7.20. If 〈X,O〉 is a topological space and X |= S1(O,O), then any continuous

image of X into NN can be guessed.

Proof. This essentially is the same proof as of Theorem 4.11. Assume some X ⊆ NN with

X |= S1(O,O). Fix m ∈ N. Put Um := {(m, k)↑ | k ∈ N} where (m, k)↑ := {f ∈ NN | f(m) =

k} for all k ∈ N. Evidently, Um is an open cover of X. Fix a bijection ψ : N× N↔ N.

Fix i ∈ N. Since X |= S1(O,O) and 〈Uψ(i,n) | n ∈ N〉 is a countable family of open covers

of X, there exists gi : ψ[{i} × N]→ N such that X ⊆
⋃
n∈N

(
ψ(i, n), g

(
ψ(i, n)

))↑
.

Let g : N→ N be g :=
⋃
n∈N gn. It is evident that g guesses X. �

Theorem 7.21 (Rec law). Suppose 〈X,O〉 is a topological space that has a base B which is

countable and composed only of clopen sets.

If any continuous image of X into NN can be guessed, then X |= S1(O,O).
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Proof. Assume a family of open covers of X, 〈Un ⊆ B | n ∈ N〉. Since B is countable, there

exists an enumeration Un = {Um
n | m ∈ N} for all n ∈ N. We may also assume for all n ∈ N

that members of Un are mutually-disjoint, thus, for all x ∈ X, there is a unique fx ∈ NN

such that x ∈ U fx(n)
n for all n ∈ N. Finally, let ψ : X → NN be the map x 7→ fx.

Since ψ is continuous, we may pick g ∈ NN that guesses ψ[X].

For all n ∈ N, let Un := U
g(n)
n . To see that 〈Un | n ∈ N〉 covers X. Notice that for each

x ∈ X, there exists some n ∈ N such that fx(n) = g(n), i.e., x ∈ U g(n)
n = Un. �

Corollary 7.22. For all X ⊆ R, TFAE:

• X |= S1(O,O).

• Any continuous image of X into NN can be guessed.

Proof. By theorems 7.20,7.21 and 7.11. �

Corollary 7.23. X |= S1(O,O) for all X ∈ [R]<cov(M).

Corollary 7.24. If X ⊆ R is cov(M)-concentrated on one of its countable subsets, then

X |= S1(O,O).

Corollary 7.25. If cov(M) = d, then M of Theorem 4.20 satisfies S1(O,O).

To complete the picture, we mention the following important result.

Theorem 7.26 (Laver). Borel’s conjecture 7.5 is consistent.

It follows from Corollary 7.15 and the preceding that Borel’s Conjecture is independent

of the usual axioms of mathematics (ZFC).

Definition 7.27. A set X ⊆ NN is strongly unbounded iff for all f ∈ NN, |X ∩ {f}| < |X|.

Intuitively, strongly unbounded sets needs to be ”fat” enough to be unbounded, but ”slim”

enough to be strongly unbounded. For instance, NN is indeed unbounded, but it is too ”fat”

to be strongly-unbounded, recalling Observation 4.9.

Observation 7.28. There exists strongly unbounded families of cardinality b and d.

Proof. By Lemmas 1.11 and 1.12. �

Observation 7.29. Suppose X ⊆ NN is a set such that :

• cf |X| > ℵ0,

• For all f ∈ NN, |{g ∈ X | g ≤ f}| < |X|.
then, X is strongly unbounded.
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Proof. Because {g ∈ NN | g ≤∗ f} can be obtained as the following countable union:⋃{
{g ∈ NN | g ≤ f ′} | f ′ ∈ NN∃N ∈ N(∀n ≥ N(f ′(n) = f(n))

}
.

�

Let us examine several consequences of Borel’s conjecture (BC).

Observation 7.30. Assuming ZFC+BC, we have:

(a) SN = [R]≤ω.

(b) X ⊆ R satisfies S1(O,O) iff X is countable.

(c) Any (continuous) image of SMZ is SMZ.

(d) There is no Luzin set.

(e) For any uncountable cardinal κ ≤ cov(M), there is no strongly unbounded family

X ∈ [NN]κ.

(g) cov(M) < min{cof(M), b}. In particular b > ℵ1 and ¬CH.

Proof. (a) is equivalent to BC. (b) follows from Observation 7.14. (c) follows from the fact

that an image of a countable set is countable. (d) follows from Corollary 7.15.

(e) If X ⊆ NN is strongly-unbounded and ψ : NN → (0, 1) \Q is an homeomorphism, then

ψ[X] ∪ (Q ∩ [0, 1]) is |X|-concentrated at Q ∩ [0, 1]. Thus, if also |X| ≤ cov(M), then by

Corollary 7.24 and Observation 7.14, ψ[X] ∪ (Q ∩ [0, 1]) is SMZ.

(f) If cov(M) = cof(M), then we may apply Theorem 3.7 to obtain a subset of R which is

cov(M)-concentrated at any of its countable dense subsets. Now apply Corollary 7.24 and

Observation 7.14.

If cov(M) = b, then Observation 7.28 would have contradict the preceding item.

Finally, by b > cov(M), we have:

c ≥ b > cov(M) ≥ add(M) ≥ ℵ1.

�

Question 7.31. Is it always true that the continuous image of SMZ is SMZ?

We had already seen that, consistently, SMZ and S1(O,O) are different properties, e.g.,

assuming CH, S1(O,O) is non-hereditary, while SN is an ideal. To answer our question

(negatively), we introduce the following theorem:

Theorem 7.32 (Fremlin-Miller). For X ⊆ R, TFAE:

(a) X |= S1(O,O).

(b) Any continuous image of X into R is strongly null.
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Corollary 7.33 (CH). There exists an SMZ, X ⊆ R, and a continuous function f : X → R,

such that f [X] is not SMZ.

Proof. Suppose not. Put S := {X ⊆ R | X |= S1(O,O)}, then for all X ⊆ R, if X is SMZ,

then any continuous image of it into R is SMZ. It follows from Theorem 7.32 that S = SN ,

and in particular, S is an ideal, contradicting Observation 7.17 with d = c = ℵ1. �

It happens that the converse of Theorem 7.19 is also true.

Fact 7.34. There exists X ∈ [NN]cov(M) that cannot be guessed.

In particular, the minimal cardinality of A ⊆ R with A 6|= S1(O,O) is cov(M).

Together with Observation 7.30, we obtain that assuming ZFC+BC: cov(M) = ℵ1 < b.
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8. 05.01.06

Observation 8.1 (ZFC+BC). If 〈X, d〉 is metric, and X |= S1(O,O), then |X| ≤ ℵ0.

Proof. By Observation 7.14, every S1(O,O) metric space is strongly null. Thus, if Borel’s

conjecture 7.5 holds, then X must be countable. �

If one omits the requirement of metricity, we get the following.

Theorem 8.2 (ZFC). There exists an unctounable non-metrizable space that satisfies S1(O,O).

Proof. Consider X := ω1 + 1. We equip X with the interval topology. Let 〈X,O〉 be the

topological space determined by the base:

B := {α↑, α↓, (β, α) | β < α < ω1},

where α↑ := {γ ∈ X | γ > α}, α↓ := {γ ∈ X | γ < α}, (β, α) := β↑ ∩ α↓. We now show

that X is concentrated on the singleton {ω1}, concluding that X |= S1(O,O). Indeed, if

U is an open set containing ω1, then U ⊇ α↑ for some α < ω1. For such α, we get that

(X \ U) ⊆ α + 1, and in particular, (X \ U) is countable. �

We now work towards giving a direct proof to Corollary 7.33.

Lemma 8.3 (Embedding). Suppose there is a dominating/unbouned/strongly-unbounded

family of cardinality κ, and A ⊆ {0, 1}ω is a set of cardinality ≤ κ.

Then, there there exists a set B ∈ [ωω]κ and a continuous function φ : ωω → ωω such that

B is dominating/unbouned/strongly-unbounded (respectively), and φ[B] = A.

Proof. Assume D = {fα | α < κ} ∈ [ωω]κ is unbounded (or dominating, or strongly-

unbounded). Let {gα | α < κ} enumerate A. Put B := {hα | α < κ}, where:

hα(n) := 2fα(n) + gα(n) (α < κ, n < ω)

B is evidently unbounded (or dominating, or strongly-unbounded). Finally, define a contin-

uous function φ : ωω → ωω by letting for all f ∈ ωω and n < ω: φ(f)(n) = f(n) mod 2. �

Lemma 8.4 (Interleaving). Suppose there is an unbouned/strongly-unbounded family of car-

dinality κ, and A ⊆ ωω is a set of cardinality ≤ κ.

Then, there there exists a set B ∈ [ωω]κ and a continuous surjection φ : ωω → ωω such

that B is unbouned/strongly-unbounded (respectively), and φ[B] = A.

Proof. Assume D = {fα | α < κ} ∈ [ωω]κ is unbounded (or strongly-unbounded). Let

{gα | α < κ} enumerate A. Put B := {hα | α < κ}, where:

hα(n) =

{
fα(k) ∃k < ω(n = 2k)

gα(k) ∃k < ω(n = 2k + 1)
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B is evidently unbounded (or strongly-unbounded). Finally, define φ : ωω → ωω in the

obvious way. �

Definition 8.5. Assume κ is a cardinal, and I is an ideal over some set X.

We say that I has the κ-flexability property iff I is non-trivial, and whenever Y ⊆ X is

κ-concentrated on some A ∈ I, then Y ∈ I.

Observation 8.6. Suppose I is an ideal over some set X that has the κ-flexability property,

then non(I) ≥ κ.

Proof. Fix A ∈ [X]<κ. Pick a ∈ A. Since I is non-trivial, {a} ∈ I. It is now obvious that A

is κ-concentrated at {a} ∈ I. �

Observation 8.7. N has the non(N )-flexability property.

SN has the non(SN )-flexability property.

Proof. Assume Y,A are subsets of R, where A ∈ I and Y is non(N )-concentrated at A.

Fix ε > 0. Since A ∈ I, we may find a family of open sets {Un | n ∈ N} with∑
n∈N Diam(Un) < ε

2
, and A ⊆ U :=

⋃
n∈N Un

Since U is open containing A, |Y \ U | < non(N ). In particular, (Y \ U) ∈ N and we may

find a family of open sets {Vn | n ∈ N} such that (Y \U) ⊆
⋃
n∈N Vn and

∑
n∈N Diam(Vn) < ε

2
.

The proof for the case of SN is essentially the same. �

Theorem 8.8. Assume J ⊆ P(R) is a non-trivial, σ-additive, proper ideal.

Then for any ideal I ⊆ P(R) and a cardinal κ ≥ non(J ) such that:

• I has the κ-flexability property;

• There exists a strongly-unbounded family of size κ.

there exists X ∈ I, and a continuous function f : X → R such that f [X] 6∈ J .

Proof. Pick A ∈ [R]non(J ), with A 6∈ J . If {A ∩ [z, z + 1] | z ∈ Z} ⊆ J , then by the

σ-additivity of J , A ∈ J . It follows that there exists z ∈ Z, such that [z, z + 1] ∩ A 6∈ J .

For notational simplicity, we assume A ⊆ [0, 1]. J is σ-additive and non-trivial, thus

Q ∈ J , hence, we may also assume that A ∩Q = ∅.
Altogether, we assume A ⊆ ([0, 1] \Q), |A| = non(J ), and A 6∈ J .

Let ψ : [0, 1]\Q→ ωω be an homeomorphism. Put A′ := ψ[A]. By the interleaving lemma

8.4, there exists a strongly-unbounded B ∈ [ωω]κ, and a continuous function φ : ωω → ωω

such that φ[B] = A′. Let X := ψ−1[B] and f := (ψ−1 ◦ φ ◦ ψ) � X.

Notice that X ⊆ R, f : X → R is a composition of continuous functions, and:

f [X] = ψ−1[φ[ψ[X]] = ψ−1[φ[B]] = ψ−1[A′] = A 6∈ J .
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We are left with showing that X ∈ I. Since I satisfies the κ-flexability property, it suffices to

show that X is κ-concentrated at some set from I. By Observation 8.6 and the hypothesis,

non(I) ≥ κ ≥ non(J ) ≥ add(J ) ≥ ℵ1, thus Q ∈ I. Finally, notice that if U is an open set

containing Q, then ψ[[0, 1]\U ] is compact, thus ≤∗-bounded, thus ψ[X \U ] is a ≤∗-bounded

subset of the strongly-unbounded set B, and hence, |X \ U | = |ψ[X \ U ]| < |B| = κ. �

Thus, for instance, if CH holds, we may find a strongly-null subset of R with a continuous

image which is not null. We may also find a strongly-null subset of R with a continuous

image which is not meager. In particular, this set must be uncountable, thus we had obtained

an alternative proof to the fact that CH=⇒ ¬BC.

Proposition 8.9 (CH). Assume that I ⊆ P(R) is an ideal that has the ℵ1-flexability prop-

erty, then for any Y ⊆ ωω, there exists X ∈ I and a continuous f : X → ωω such that

f [X] = Y .

Proof. Fix Y ⊆ NN. If Y is countable, this is easy (recall Observation 8.6).

Assume that Y is uncountable. By CH, we may fix a b-scale {fy ∈ ωω | y ∈ Y }. Now, by

applying the interleaving lemma 8.4, we obtain a set B ⊆ ωω that interleaves ωω inside this

scale. In greater details, we obtain a strongly-unbounded set B of size b, and a continuous

function φ : ωω → ωω such that φ[B] = Y . Let ψ : [0, 1] \Q→ ωω be an homeomorphism.

Put X := ψ−1[B] and f = (φ ◦ ψ) � X. Evidently, f is continuous and f [X] = Y .

The standard argument shows that X is b-concentrated at Q. Finally, it follows from the

hypothesis that Q ∈ I, b = ℵ1 and X ∈ I. �

Corollary 8.10 (CH). There exists X ∈ SN , and a continuous function f : X → R such

that f [X] ∈ SN ∗, i.e., a strongly-null set whose continuous image is of Lebesgue measure 1.

Proof. Since (0, 1) \Q is of Lebesgue measure 1 and a continuous image of ωω. �

It is worth mentioning that one can prove in ZFC that there exists continuous mapping

from the cantor set (=a set of measure zero) onto the unit interval (=a set of measure 1).

Question 8.11. Suppose there exists an arbitrary metric space 〈X, d〉 which is uncountable

and strongly-null, must this indicate the violation of Borel’s Conjecture 7.5 ?

Question 8.12 (Miller). Suppose there exists a metric space 〈X, d〉 which is strongly-null

and |X| = c, must this indicate the existence of Y ∈ [R]c which is SMZ ?

The second question is still open. We shall now work towards introducing a positive answer

to the first question. The key to the solution of this question is Carlson’s lemma. 8.21 which

is deeply inspired by Urysohn’s Theorem 8.20.



INFINITE COMBINATORIAL TOPOLOGY 53

Definition 8.13. A topological space 〈X,O〉 is T1 iff {x} is a closed subset for all x ∈ X.

Definition 8.14. A T1 topological space X is regular iff whenever A is closed subset of X

and x /∈ A, then there are disjoint open sets U, V with x ∈ U and A ⊆ V .

A T1 topological space X is normal iff whenever A,B are disjoint closed sets in X, then

there are disjoint open sets U, V with A ⊆ U and B ⊆ V .

Notice that a metric space is normal and regular. Actually, we had already took advantage

of this property in the proof of Theorem 3.16. Also notice that a normal space is regular,

since in a T1 space points are closed sets.

Observation 8.15. Suppose 〈X,O〉 is a topological space such that for any two closed subsets

A,B, there exists a continuous function f : X → [0, 1] such that f [A] = {0} and f [B] = {1},
then X is normal.

Proof. Fix closed subsets A,B, and let f be like in the hypothesis. Then f−1[0, 0.5) and

f−1(0.5, 1] are mutually disjoint open sets, containing A and B respectively. �

Urysohn, in his celebrated lemma, was able to prove the converse:

Lemma 8.16 (Urysohn). Let X be a normal topological space, and A,B ⊂ X are disjoint

and closed. Then there exist a continuous function f : X → [0, 1] such that f [A] = {0} and

f [B] = {1}.

Proof. Fix an enumeration Q ∩ [0, 1] = {rn | n ∈ N〉 with r1 = 1 and r2 = 0. We will

construct a family of open sets 〈Vr|r ∈ Q ∩ [0, 1]〉 by induction on n ∈ N. The family will

satisfy:

r < r′ =⇒ Vr ⊂ Vr′ (r, r′ ∈ Q ∩ [0, 1])

Inductinon base n ∈ {1, 2}: Put V1 = Vr1 := Bc. Since X is normal, the separation

A ⊆ U ⊆ U ⊂ Bc, where U is open, is possible. Pick such U and let V0 = Vr2 := U .

Inductive hypothesis: Assume we had already defined Vr1 , Vr2 , ..., Vrn .

Induction step n + 1: Find m, l ∈ N such that rm := max{ri | i ≤ n, ri < rn} and

rl := min{ri | i ≤ n, ri > rn} (”closest” rationals to rn+1 so far). By the normality of X, an

open set U exists such that Vrm ⊆ U ⊂ U ⊆ Vrl . Define Vrn+1 := U . End of the construction.

We now define a function f : X → [0, 1] by

f(x) =

{
inf{r|x ∈ Vr} if x ∈ V1

1 if x ∈ B
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In order to prove that f is continuous, it is suffice to show that f−1[0, a) and f−1(b, 1] are

open subsets of X for any a, b ∈ R. Indeed:

f−1[0, a) = {x|f(x) < a} = {x|∃r ∈ Q, r < a, x ∈ Vr} =
⋃

0≤r<a
r∈Q

Vr.

This is a union of open sets, thus open.

f−1(b, 1] = {x|f(x) > b} = {x|f(x) ≤ b}c = {x|∀r′ > b, x ∈ Vr′}c = {x|∃r′ > b, x /∈ Vr′} =

{x|∃r, r′, r′ > r > b, x /∈ Vr ⊆ Vr′} =
⋃

b<r≤1

Vr
c
.

Again, this is a union of open sets, hence open. �

In order to prove our next theorem we will have to introduce the Hilbert space `2.

Definition 8.17. A natural extension of finite dimensional euclidian spaces is

`2 :=
{

(x1, x2, ...) | xi ∈ R,
∑
n∈N

x2
n <∞

}
.

For any two elements x, y ∈ `2, the inner product is defined by 〈x, y〉 :=
∑

n∈N xnyn. It is

well known that any inner product space is a normed space by defining

||x− y||2 := 〈x− y, x− y〉 (x, y ∈ `2)

Notice that `2 is separable. A countable dense set is
{

(x1, ..., xn, 0, 0, ..) ∈ `2 | n ∈ N, xi ∈ Q}.

Theorem 8.18 (Urysohn). A second countable normal space is metrizable.26

Proof. Let X be a second countable normal space, and assume B = {Bj | j ∈ N} is a

countable base for the topology on X. Put I :=
{

(j, i) ∈ N× N | Bj ⊆ Bi

}
.

For each (j, i) ∈ I, by applying Urysohn’s lemma 8.16, we may pick a continuous function

fj,i : X → [0, 1] such that fj,i[B
c
i ] = {1} and fj,i[Bj] = {0}. Let us enumerate these functions

〈fj,i | (j, i) ∈ I〉 = 〈gn | n ∈ N〉 and define a function G : X → `2 by letting for each x ∈ `2:

G(x) :=
(
g1(x),

g2(x)

2
, ...,

gn(x)

n
, ...
)
.

Showing that G is a homeomorphism on G[X] ⊆ `2 will do, since a subspace of a metrizable

space is metrizable.

G is an injection: Fix x 6= y in X. It suffices to find (j, i) ∈ I such that fj,i(x) 6= fj,i(y).

X is T1, thus a base set Bi ∈ B exists, such that x ∈ Bi and y /∈ Bi. Now, since X is normal,

a base set Bj ∈ B exists, such that x ∈ Bj ⊆ Bj ⊆ Bi, hence, fj,i(x) = 1 and fj,i(y) = 0.

26Recall that a second countable topological space is a space with a countable base to its’ topology.
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G is continuous: Let x ∈ X and ε > 0. Let N be large enough so that
∑

n>N
1
n2 < ε2.

The functions g1, ..., gN are continuous, therefore there are open sets U1, ..., UN , containing

x, such that 1
n2 |gn(x) − gn(xn)|2 < ε2

N
whenever 1 ≤ n ≤ N and xn ∈ Un. Finally, for every

u ∈ U :=
⋂

1≤n≤N Un, we have:

||G(x)−G(u)||2 =
∑
n∈N

|gn(x)− gn(u)|
n2

< 2ε2.

We get that for every x ∈ X there existt an open set x ∈ U such that G(U) ⊆ B√2ε(G(x)),

that is G is continuous.

G is open: Let U be an open subset of X and pick x ∈ U . Since X is regular there are

Bi, Bj ∈ B such that x ∈ Bj ⊆ Bj ⊆ Bi.

Now, gn = fj,i satisfies gn(x) = 0 and gn(U c) = 1, therefore, for y ∈ U c

||G(x)−G(y)|| ≥ 1

n2
|gn(x)− gn(y)|2 =

1

n2
.

We get that if y satisfies G(y) ∈ B 1
2n

(G(x)) than y 6∈ U c, meaning that y ∈ U and therefore

B 1
2n

(G(x)) ⊂ G(U), hence G is open. �

The previous theorem can be strengthened with some more topological arguments.

Lemma 8.19. A second countable regular space X is normal.

Proof. Suppose A and B are mutually-disjoint closed subsets of X.

Assume B = 〈Dn|n ∈ N〉 is a countable base to X. Fix functions f : A → N, g : B → N
such that:

• For all x ∈ A: x ∈ Df(x) ⊆ Df(x) ⊆ Bc;

• For all y ∈ B: y ∈ Dg(y) ⊆ Dg(y) ⊆ Ac.

To see such function exists, fix for instance x ∈ A. Since X is regular, a base set Dn ∈ B
exists such that x ∈ Dn ⊆ Dn ⊆ Bc.

Enumerate {Un | n ∈ N} = {Df(x) | x ∈ A} and {Vn | n ∈ N} = {Dg(y) | y ∈ B}. It

follows that A ⊆
⋃
n∈N Un, B ⊆

⋃
n∈N Vn, and B ∩ Un = ∅, A ∩ Vn = ∅ for all n ∈ N.

For every n ∈ N, define U ′n := Un \
⋃
i≤n Vi and V ′n := Vn \

⋃
i≤n Ui.

Notice that U :=
⋃
n∈N U

′
n is a union of open sets, thus open. Same for V :=

⋃
n∈N V

′
n.

Also, by the choice of {Un, Vn | n ∈ N}, A ⊆ U and B ⊆ V . We are left with showing

that U ∩ V = ∅. Assume that there is x with x ∈ U ∩ V , that is, there are i, j ∈ N with

x ∈ U ′i ∩ V ′j . Obviously, i 6= j. Actually, if i < j, then x 6∈ V ′j , and if i > j, then x 6∈ U ′i .
Altogether, we get that U ∩ V = ∅. �

Corollary 8.20 (Urysohn). A second countable regular space is metrizable.
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`2 is a separable metric space. Urysohn’s theorem assures us that a second countable

regular space is separable and metrizable. On the other hand, any separable metrizable

space is second countable27 and normal (hence regular), thus the equivalence. knowing that,

we get that every separable metrizable space is homeomorphic to some subspace of `2.

Lemma 8.21 (Carlson). If 〈X, d〉 is a separable metric space and |X| < 2ℵ0, then there

exists an injection ψ : X → R such that |ψ(x)− ψ(y)| ≤ d(x, y) for all x, y ∈ X.

Proof. By Lemma 5.3, we may assume that Im(d) ⊆ [0, 1].28 Since X is separable, we may

pick a dense subset {xn | n < ω}. For each x ∈ X, attach an analytic function on the unit

ball, fx : {y ∈ C | |y| < 1} → C, by letting:

fx(z) :=
∞∑
n=0

d(x, xn)

n!
zn.

Since x 7→ 〈d(x, xn) | n < ω〉 is one-to-one, and two analytic functions with different Taylor

expension are different, we have that x 7→ fx is one-to-one.

Lemma 8.22. If f, g are two analytic functions, then Af,g := {z | f(z) = g(z)} is countable.

Proof. Suppose not, then we could find a compact subset K ⊆ C such that K ∩ Af,g is

uncountable. In particular, f and g are two analytic functions that share an accumulation

point, and we must have conclude that f = g. �

Put A :=
⋃
{Afx,fy | x, y ∈ X, x 6= y}. |A| < 2ℵ0 since |X| < 2ℵ0 , and it follows that we

may pick r ∈ [0, ln(e)] ⊆ R such that r 6∈ A. Define ψ : X → R by ψ(x) := fx(r) for all

x ∈ X. ψ is an injection. To see that it satisfies the Lipshitz property, notice that for all

x, y ∈ X, we have:

|ψ(x)−ψ(y)| = |fx(r)−fy(r)| =
∣∣∣ ∞∑
n=0

d(x, xn)

n!
rn−

∞∑
n=0

d(y, xn)

n!
rn
∣∣∣ =

∣∣∣ ∞∑
n=0

d(x, xn)− d(y, xn)

n!
rn
∣∣∣

≤
∞∑
n=0

d(x, y)

n!
rn = er · d(x, y) ≤ eln(e) · d(x, y) = d(x, y).

�

Theorem 8.23 (Carlson). If there exists an uncountable metric space which is strongly null,

then ¬BC.

27Consider all open balls of rational radiuses centered at elements of a countable dense set.
28Notice that if 〈X, d〉 is strongly null, then so is 〈X, d

1+d 〉.
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Proof. If c = ℵ1, then by corollaries 3.9 and 7.15, ¬BC and we are done. Assume c > ℵ1.

Assume that 〈X, d〉 is an uncountable strongly-null metric space, then for all Y ∈ [X]ℵ1 , 〈Y, d〉
is a strongly-null metric space of cardinality < 2ℵ0 . Had we known that Y is separable, we

could use Lemmas 8.21,7.8 to complete the proof. Recalling Lemma 2.6, we are left with

proving the following. �

Lemma 8.24. Assume 〈X, d〉 is a strongly null metric space, then X is second-countable.

Proof. By the hypothesis, for all n ∈ N, we may find 〈xnm ∈ X | m ∈ N〉 and {εmn ∈ (0,∞) |
m ∈ N} such that X ⊆

⋃
m∈N Bεn

m
(xnm) and

∑
m∈N ε

n
m < 1

n
. A moment’s reflection makes it

clear that {Bεn
m

(xnm) | n,m ∈ N} is a base to X. �

Corollary 8.25. Suppose 〈X, d〉 is a metric space and X |= S1(O,O), then w(X) = ℵ0.

Proof. By Observation 7.14 and the preceding lemma. �

Definition 8.26. For a topological space 〈X,O〉, let o(X) = |O|+ ℵ0.

Corollary 8.27. Suppose 〈X, d〉 is a metric space and X |= S1(O,O), then o(X) ≤ w(x)ℵ0.

Proof. By the preceding Lemma, we may pick a base B of cardinality ℵ0, and then any U ∈ O
is of the form U =

⋃
U for some U ⊆ B, i.e., U =

⋃
U for some U ∈ [B]≤ℵ0 . �

We now work towards proving the same for Sfin(O,O).

Lemma 8.28. Suppose 〈X, d〉 is a metric space, then any open set U is Fσ.

Proof. Since U is open U =
⋃
i∈I Bri(xi) (where I is some index set and Bri(xi) is an open

ball of radius ri centered at xi).

For every i ∈ I fix some sequence 〈εik | k ∈ N〉 such εik → ri. Define Fk :=
⋃
i∈I Bεik

(xi).

Evidently U =
⋃
k∈N Fk.

�

Lemma 8.29. The property Sfin(O,O) is σ-additive.

Proof. Suppose 〈X,O〉 is a metric space, and 〈Xm ⊆ X | m < ω〉 is a family of subspaces,

each satisfies Sfin(O,O). We shall show that
⋃
m∈NXm |= Sfin(O,O).

Assume 〈Un | n ∈ N〉 is a family of open covers of
⋃
n∈NXn. Put N =

⊎
m∈NAm where

each Am is infinite. For m ∈ N, by Xm |= Sfin(O,O), we may find 〈Fn ∈ [Un]<ω | n ∈ Am〉
such that Xm ⊆

⋃⋃
n∈Am

Fm. It follows that
⋃
m∈NXm ⊆

⋃⋃
m∈NFm. �

Corollary 8.30. Sfin(O,O) is open hereditary to any metric space.

Proof. By Observation 1.27, Sfin(O,O) is closed hereditary. Now apply Lemmas 8.28,8.29.

�
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Corollary 8.31. Suppose 〈X, d〉 is a metric space and X |= Sfin(O,O), then o(X) ≤ w(x)ℵ0.

Proof. Fix a base B of cardinality w(X). Then for any open set U , there exists some U ⊆ B
such that U =

⋃
U . Finally, by Corollary 8.30 and Observation 1.28 (applied to U), there

exists V ∈ [U ]≤ℵ0 such that U =
⋃
V . Thus, we have shown that for each open set U , there

exists V ∈ [B]≤ℵ0 such that U =
⋃
V . �
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9. 12.01.06

Definition 9.1. We say that a topological space 〈X,O〉 satisfies S1(A,B) iff for every se-

quence 〈Un ∈ A | n ∈ N〉, there are 〈Un ∈ Un | n ∈ N〉 such that {Un | n ∈ N} ∈ B.

Definition 9.2. We say that a topological space 〈X,O〉 satisfies Sfin(A,B) iff for every

sequence 〈Un ∈ A | n ∈ N〉, there are 〈Fn ∈ [Un]<ω | n ∈ N〉 such that
⋃
n∈NFn ∈ B.

Definition 9.3. We say that a topological space 〈X,O〉 satisfies Ufin(A,B) iff for every

sequence 〈Un ∈ A | n ∈ N〉 such that Un does not contain a finite cover for all n ∈ N, there

are 〈Fn ∈ [Un]<ω | n ∈ N〉 such that {
⋃
Fn | n ∈ N} ∈ B.

We will only be interested in A,B with A,B ⊆ P(O) and
⋃
U = X for all U ∈ A ∪ B.

Observation 9.4. Suppose 〈X,O〉 is a topological space, and O denotes the family of all

open covers of X.

Then X |= Sfin(A,O) iff X |= Ufin(A,O).

Proof. Same proof as in Observation 5.15. �

Observation 9.5 (monotonicity). If A1 ⊆ A2 and B1 ⊆ B2 then π(A2,B1) ⇒ π(A1,B1)

and π(A2,B1)⇒ π(A2,B2), where π ∈ {S1, Sfin, Ufin}.

Lemma 9.6. Suppose 〈X,O〉 is a Lindelöf topological space, B ⊆ P(O), and let Γ := ΓX
denote the family of all γ-covers of X.29

Then X |= Ufin(Γ,B) iff for all A, a family of open covers of X, X |= Ufin(A,B).

Proof. We would like to prove:

∀A.X |= Ufin(A,B)⇒ X |= Ufin(Γ,B)⇒ X |= Ufin(O,B)⇒ ∀A.X |= Ufin(A,B).

But the only non-trivial implication is X |= Ufin(Γ,B)⇒ X |= Ufin(O,B).

Assume 〈Un ∈ O | n ∈ N〉 are given and no Un contains a finite cover. Fix n ∈ N. By

Lindelöfness, we may assume an enumeration Un = {Uk
n | k ∈ N}. Let Vn := {V k

n | k ∈ N}
where V k

n :=
⋃
m≤k U

m
n for all k ∈ N. Since Un contains no finite cover, we know that Vn ∈ Γ.

By X |= Ufin(Γ,B), there exists f : N→ [N]<ω such that if we let Fn := {V k
n | k ∈ f(n)}

for all n ∈ N, then {
⋃
Fn | n ∈ N} ∈ B.

Define g : N → [N]<ω by letting g(n) := {m ∈ N | ∃k ∈ f(n).m ≤ k} for all n ∈ N. It is

evident that
⋃
Gn =

⋃
Fn whenever n ∈ N and Gn := {Uk

n | k ∈ g(n)} ∈ [Un]<ω. �

Corollary 9.7. Suppose 〈X,O〉 is a Lindelöf topological space. Let Γ := ΓX .

Then X |= Sfin(O,O) iff X |= Ufin(O,O) iff X |= Ufin(Γ,O)

29Recall Definition 5.8.
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Corollary 9.8. Suppose 〈X,O〉 is a Lindelöf topological space. Let Γ := ΓX .

Then X |= Ufin(O,Γ) iff X |= Ufin(Γ,Γ).

Proposition 9.9. S1(O,Γ) is trivial

Proof. Because it implies Sfin(O,Γ). Now recall Observation 5.14. �

The same trick of the proof of Theorem 9.6 will prove that S1(Γ,Γ) implies Ufin(O,Γ) and

that S1(Γ,O) implies Sfin(O,O), thus we obtain the following diagram of implications:

Ufin(O,Γ) Sfin(O,O)

S1(Γ,Γ) S1(Γ,O)

S1(O,O)

-

-

6 6

6

Theorem 9.10 (Scheepers-Just-Miller-Szeptycki). Sfin(Γ,Γ) = S1(Γ,Γ).

Proof. Suppose 〈X,O〉 is a topological space, Γ := ΓX , and X |= Sfin(Γ,Γ).

Assume 〈Un ∈ Γ | n ∈ N〉 are given. By the hypothesis, there exists 〈Fn ∈ [Un]<ω | n ∈ N〉
such that

⋃
n∈NFn ∈ Γ. By Observation 5.9, if we pick 〈Un ∈ Fn | n ∈ N〉, then also

{Un | n ∈ N} ∈ Γ and we are almost done.

In order to be done, we need to somehow ensure that we indeed selected an element

Un ∈ Un for all n ∈ N, but this wouldn’t happen in the above approach if there exists empty

Fn’s. To complete the proof, we need the following. �

We now generalize the idea of Observation 7.13.

Lemma 9.11. Suppose 〈X,O〉 is a topological space, then X |= S1(Γ,Γ) iff for all 〈Un ∈ Γ |
n ∈ N〉 there exists 〈Fn ∈ [Un]≤1 | n ∈ N〉 such that {U | ∃n ∈ N(U ∈ Fn)} ∈ Γ.

Proof. Suppose 〈Un ∈ Γ | n ∈ N〉 are given. By Observation 5.9, we may assume an

enumeration Un = {Uk
n | k ∈ N} for all n ∈ N.

For each n ∈ N, let Vn := {Uk
1 ∩ ... ∩ Uk

n | k ∈ N}. Clearly, 〈Vn | n ∈ N〉 is a sequence of

γ-covers, so by the hypothesis we find Fn ∈ [Vn]≤1 for each n ∈ N.

Let f : N → N ∪ {?} be the function such that for all n ∈ N, f(n) = {?} if Fn = ∅, and

Fn = {U f(n)
1 ∩ ... ∩ U f(n)

n }, otherwise. Since {U | ∃n ∈ N(U ∈ Fn)} ∈ Γ, Im(f) is infinite,
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and the function f̃ : N→ N is well-defined:

f(n) := {f(m) | m = min{k ≥ n | f(k) 6= ?}.

For n ∈ N, put Un := U
f̃(n)
n . It is now obvious that 〈Un ∈ Un | n ∈ N〉 is a witness to

S1(Γ,Γ).30 �

Observation 9.12. Assume 〈X,O〉 is a topological space, and 〈Un | n ∈ N〉 is a sequence

of open sets such that {n ∈ N | x 6∈ Un} is finite for all x ∈ X.

If X 6= Un for all n ∈ N , then U := {Un | n ∈ N} is an infinite set, and in particular

U ∈ Γ.

Proof. Suppose not, then by a trivial pigeonhole argument, there exists some m ∈ N and

infinite I ⊆ N such that Un = Um for all n ∈ I. Since Un 6= X, we may pick x ∈ X \Um and

conclude that I ⊆ {n ∈ N | x 6∈ Un}, yielding a contradiction to the finiteness hypothesis. �

30More accurately, it is a witness to an instance of S1(Γ,Γ), because the family 〈Un | n ∈ N〉 were already
given.
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10. 19.01.06

Definition 10.1. A property P is a topological invariant iff every two homeomorphic spaces

either both satisfy P , or they do not satisfy it.

It is easier to think about it in the sense that topological invariants are determined by the

topology (which is determined up to an homeomorphism).

For example:

• Completeness of metrics is not a topological invariant. Despite the fact that the

spaces NN and R \Q are homeomorphic, NN is a complete space but R \Q is not.

• We have already seen that SMZ is not a topological invariant.

Assume X, Y are homeomorphic, and let ψ : X → Y be an homeomorphism.

• First category is a topological invariant. Assume M ⊂ X is meager, hence, M ⊆⋃
n∈N Fn, where Fn is closed and nowhere dense for every n ∈ N. Now ψ[M ] ⊆

ψ
[⋃

n∈N Fn
]

=
⋃
n∈N ψ[Fn]. Assume that for some n ∈ N ψ[Fn] is not nowhere dense,

that is, there is an open set U ⊂ Y such that U ⊂ ψ[Fn] meaning that ψ−1[U ] ⊂ Fn.

But ψ−1 is continuous, thus ψ−1[U ] is open, a contradiction to the fact that Fn is

nowhere dense.

• Being a Luzin set is a topological invariant. Let L ⊂ X be a Luzin set, and assume

M ⊂ Y is meager. knowing the last example L∩ψ−1[M ] is countable, but since ψ is

an injection, so is ψ
[
L ∩ ψ−1[M ]

]
= ψ[L] ∩M . The last equality holds since ψ is a

bijection. Since M is an arbitrary meager set in Y , we get that ψ[L] is a Luzin set.

Definition 10.2. Suppose P is a topological invariant property, let non(P ) denote the

minimal cardinality of a space that does not satisfy property P .

We sometime call non(P ) as the critical cardinality of P .

The diagram from page 60 shows implications and has the property that any property

π(A,B), where π ∈ {S1, Sfin, Ufin} and {A,B} ⊆ {O,Γ}, is equivalent to one of the proper-

ties that appears in the diagram.

We now would like to show that this diagram is succinct, in the sense that there are no

more equivalent properties in this diagram. We obtain our goal by analyzing their critical

cardinalities.

Observation 10.3. non(Sfin(O,O)) = d.

Proof. By Theorem 4.10. �

Observation 10.4. non(Ufin(O,Γ)) = b.

Proof. By Theorem 5.18. �
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Observation 10.5. non(S1(O,O)) = cov(M).

Proof. By Corollary 7.22, Theorem 7.19 and Fact 7.34. �

Observation 10.6. Suppose P,Q are topological properties, and P → Q, that is, for any

space X, X |= P only if X |= Q. then non(P ) ≤ non(Q).

Lemma 10.7. non
(
S1(Γ,O)

)
= d.

Proof. By the preceding observation, by S1(Γ,O) → Sfin(O,O), and by non(Sfin(O,O)) =

d, it suffices to show that if 〈X,O〉 is a topological space and |X| < d, then X |= S1(Γ, O).

Suppose 〈Un ∈ Γ | n ∈ N〉 are given. By Observation 5.9, we may assume an enumeration

Un = {Uk
n | k ∈ N} for all n ∈ N. For all x ∈ X, define fx ∈ NN, by letting for all n ∈ N:

fx(n) := min{m ∈ N | ∀k ≥ m(x ∈ Uk
n)}.

By |X| < d, we may pick some g ∈ NN such that g 6≤∗ fx for all x ∈ X.

For all n ∈ N, let Un := U
g(n)
n . We claim that {Un | n ∈ N} ∈ O. To see this, fix x ∈ X.

Let n ∈ N be such that fx(n) < g(n), then, by definition of fx, x ∈ U g(n)
n = Un. �

Thus, we obtain the analogue of Corollary 7.24.

Corollary 10.8. If X ⊆ R is d-concentrated at one of its countable subsets, then X |=
S1(Γ,O).

Proof. Divide to odds and evens like in the proof of Observation 3.17. �

Lemma 10.9. non(S1(Γ,Γ)) = b.

Proof. By S1(Γ,Γ)→ Ufin(O,Γ), and non(Ufin(O,Γ)) = b, it suffices to show that if 〈X,O〉
is a topological space and |X| < b, then X |= S1(Γ,Γ).

Suppose 〈Un ∈ Γ | n ∈ N〉 are given. By Observation 5.9, we may assume an enumeration

Un = {Uk
n | k ∈ N} for all n ∈ N. For all x ∈ X, define fx ∈ NN, by letting for all n ∈ N:

fx(n) := min{m ∈ N | ∀k ≥ m(x ∈ Uk
n)}.

By |X| < b, we may pick some g ∈ NN such that {fx | x ∈ X} ⊆ {g}. For all n ∈ N, let

Un := U
g(n)
n . We claim that {Un | n ∈ N} ∈ O. To see this, fix x ∈ X.

Let m ∈ N be such that fx(n) ≤ g(n) for all m ≥ n, then, by definition of fx, we have

that x ∈ U g(n)
n = Un for all n ≥ m and we are done. �

By Lemma 1.9, b ≤ d, and by Observation 5.9, cov(M) ≤ d. Assuming CH they are all

equal, but it is also consistent to have b < d or cov(M) < d. Thus:

Corollary 10.10. S1(Γ,Γ) 9 S1(O,O), S1(Γ,O) 9 Sfin(O,Γ) and S1(O,O) 9 Ufin(O,Γ).
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Also recall Theorem 6.13 that shows that Sfin(O,O) 9 Ufin(O,Γ).

Thus, to claim that the diagram is succinct, we still need to seperate S1(Γ,Γ) from

Ufin(O,Γ) and S1(Γ,O) from Sfin(O,O).

Ufin(O,Γ), b Sfin(O,O), d

S1(Γ,Γ), b S1(Γ,O), d

S1(O,O), cov(M)

-

-

6 6

6

Theorem 10.11 (Scheepers-Just-Miller-Szeptycki). The cantor space satisfies Sfin(O,O)

and Ufin(O,Γ) but does not satisfy S1(Γ,O) and S1(Γ,Γ).

Proof. Let X := {0, 1}N be the cantor space. X is compact, so by Lemma 5.16, X |=
Ufin(O,Γ), and hence also X |= Sfin(O,O).

To show that X |= ¬S1(γ,O)∧¬S1(Γ,Γ), it suffices to show that X 6|= S1(Γ,O). We first

need the following lemma:

Lemma 10.12. There exist a matrix A = 〈Anm | m,n ∈ N〉 satisfying :

(1) Each element of the matrix is closed subset of the cantor space.

(2) Fixing m ∈ N, 〈Anm | n ∈ N〉 are disjoint.

(3) For different m1, ...,mk ∈ N, ∩An1
m1
· · · ∩ Ank

mk
6= ∅, for all n1, ..., nk ∈ N.

Proof. Omitted. �

Now, for each m ∈ N, let Um := {X \ Amn | n ∈ N}. By property (1), members of Um are

open sets. Together with property (2), we get that Um ∈ Γ.

Finally, assume a sequence 〈Um ∈ Um | m ∈ N〉. For all m ∈ N, there exists some

nm ∈ N such that Um = X \ Anm
m . By property (3), F := {Anm

m | m ∈ N} satisfies the finite

intersection property. Together with with property (1), we obtain that
⋂
F 6= ∅, and hence

{Um | m ∈ N} 6∈ O. �

Corollary 10.13. For all X ⊆ R, if X contains a perfect subset, then X 6|= S1(Γ,O).

Proof. If X contains a perfect set, then it contains a closed subset which is homeomorphic

to the cantor space. Now, it is easy to see that S1(Γ,O) is a closed-hereditary property. �

Corollary 10.14. If X ⊆ R is an uncountable Fσ set, then X 6|= S1(Γ,O).
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Proof. Since any uncountable Fσ set contains a closed perfect subset. �

Theorem 10.15. It is consistent that b = cov(M), while Ufin(O,Γ) 6= S1(O,O).

First proof. By the arguments of Observation 5.23, if cov(M) = cof(M), then there exists a

set X ⊆ NN which is ≤∗-unbounded and cov(M)-concentrated on its dense countable subset,

by Corollary 7.24, X |= S1(O,O), and by Theorem 5.19, X 6|= Ufin(O,Γ).

Finally, assuming CH, we indeed have b = cov(M) = cof(M). �

The essence of the preceding proof is Corollary 4.5 that implies that any Luzin subset of

NN is ≤∗-unbounded. Also notice that since any Luzin set L ⊆ R satisfies S1(O,O), and the

latter implies SMZ, then there must exist some dense subset of R which is disjoint from L.

Observation 10.16. A Sierpinski does not satisfy S1(O,O).

Proof. By Observation 7.14 and Proposition 7.3, if S |= S1(O,O), then S is a null set. A

Sierpinski set is an uncountable set have countable intersection with any null set, so it cannot

be itself a null set. �

Lemma 10.17 (Scheepers-Just-Miller-Szeptycki). Any Sierpinski, S, satisfies S1(Γ,Γ).

Proof. Suppose 〈Un ∈ Γ | n ∈ N〉 are given. By Observation 5.9, we may assume an

enumeration Un = {Uk
n | k ∈ N} for all n ∈ N. For all x ∈ X, define fx ∈ NN, by letting for

all n ∈ N:

fx(n) := min{m ∈ N | ∀k ≥ m(x ∈ Uk
n)}.

We claim that x
ψ7→ fx is a Borel map. Fix a finite function σ : {1, ..,m} → N, we need to

show that A := ψ−1[σ↑] is a Borel subset of S. Indeed, A =
⋂
{An1 , An2 | 1 ≤ n ≤ m}, where:

An1 = {x ∈ S | ∀k ≥ σ(n)(x ∈ Uk
n)} =

∞⋂
k=σ(n)

Uk
n ,

An2 = {x ∈ S | ∃k < σ(n)(x 6∈ Uk
n)} =

⋃
k<σ(n)

S \ Uk
n .

If follows Claim 5.29 that we may pick some g ∈ NN such that {fx | x ∈ X} ⊆ {g}. For

all n ∈ N, let Un := U
g(n)
n . We claim that {Un | n ∈ N} ∈ O. To see this, fix x ∈ X.

Let m ∈ N be such that fx(n) ≤ g(n) for all m ≥ n, then, by definition of fx, we have

that x ∈ U g(n)
n = Un for all n ≥ m and we are done. �

Corollary 10.18. It is consistent that b = cov(M), while S1(Γ,Γ) 6= S1(O,O).

Proof. By Corollary 3.8, assuming CH, there exists a Sierpinski set, S, and also b = cov(M).

�
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11. 26.01.06

Definition 11.1. An open cover U is an ω-cover of X iff:

• For every finite set F ⊆ X there exist U ∈ U such that F ⊆ U .

• X /∈ U .

We denote the family all ω-covers of X by Ω.

Observation 11.2. If U is an ω-cover of X, then for every finite subset F ⊆ X there are

infinitely many U ∈ U such that F ⊆ U . In particular, U is infinite.

Proof. For all U ∈ U , pick xU ∈ X \ U arbitrarily. Fix F ∈ [X]<ω.

We define an infinite family {Un | n ∈ N} by induction. Let U1 be such that F ⊆ U1, and

let Un+1 be such that F ∪ {XU1 , .., XUn} ⊆ Un+1. �

We denote by C(X) the set of all continuous functions from X to R. We will consider this

as a topological space, and the topology will be inherited from RX ⊇ C(X). This topology

is determined by pointwise convergence, that is, fn → f iff fn(x)→ f(x) for all x ∈ X. This

topological space is not metrizable, thus the closure operator is not easy to figure.

Definition 11.3. A topological space X satisfies the Frèchet-Urysohn (FU) property iff for

every A ⊂ X and every a ∈ A there exist a sequence 〈an|n ∈ N〉 such that an → a.31

Definition 11.4. A topological space satisfies the property
(A
B

)
iff for every U ∈ A there

exist V ⊆ U such that V ∈ B.

For example, denote by Φ all finite open covers. The property
(O
Φ

)
is compactness.

Theorem 11.5 (Gerlitz-Nagy). C(X) satisfies the FU property iff X |=
(

Ω
Γ

)
.

The property
(

Ω
Γ

)
is also known as the γ-property and is equivalent to S1(Ω,Γ):

Lemma 11.6. S1(Ω,Γ) implies
(

Ω
Γ

)
.

Proof. Suppose 〈X,O〉 is a topological space. Ω := ΩX ,Γ := ΓX , and X |= S1(Ω,Γ).

Fix U ∈ Ω. For all n ∈ N, let Un := U . It follows from X |= S1(Ω,Γ) that there exists

〈Un ∈ Un | n ∈ N〉 such that {Un | n ∈ N} ∈ Γ. Since {Un | n ∈ N} ⊆ U , we are done. �

Theorem 11.7. S1(Ω,Γ) =
(

Ω
Γ

)
.

31In a general topological space, a sequence 〈an | n ∈ N〉 converges to a iff every open set containing a,
contains the tail of the sequence.



INFINITE COMBINATORIAL TOPOLOGY 67

Definition 11.8. The Rothberger space is [N]ℵ0 := 〈A ⊆ N | |A| = ℵ0〉.
• For A,B ⊆ N: A ⊆∗ B iff |A \B| < ω.

• F ⊆ [N]ℵ0 is centered iff every A1, ..., Ak ∈ F satisfies
⋂
i≤k Ak is infinite.

• A ∈ [N]ℵ0 is almost intersection of F iff for every B ∈ F , A ⊆∗ B.

• p := min
{
|F| | F ⊆ [N]ℵ0 is centered and F does not have an almost intersection

}
.

Lemma 11.9. p > ℵ0.

Proof. Suppose F := {Bn ∈ [N]ℵ0 | n ∈ N} is centered. For all n ∈ N, put An := B1∩ ...∩Bn,

by the hypothesis on F , An 6= ∅, so pick xn ∈ An \ {x1, .., xn−1}. It is now obvious that

A = {xn | n ∈ N} is an almost intersection of F . �

Lemma 11.10. Suppose 〈X,O〉 is a topological space, and the product space Xk is Lindelöf

for all k ∈ N, then any ω-cover contains a countable ω-cover.

Theorem 11.11. non(
(

Ω
Γ

)
) = p.

Proof. Suppose X ∈ [R]<p and U ∈ Ω. By the preceding lemma, we may assume an enumer-

ation U := {Un | n ∈ N}. For all x ∈ X, let Ax := {n ∈ N | x ∈ Un}. By Observation 11.2,

Ax ∈ [N]ℵ0 for all x ∈ X and F := {Ax | x ∈ X} is centered.

Since |F| ≤ |X| < p, we may pick an almost intersection B ∈ [N]ℵ0 .

We claim that {Un | n ∈ B} ∈ Γ. Indeed, if x ∈ X then B \ Ax is finite, that is,

{n ∈ B | x 6∈ Un} is finite.

We shall now introduce a set X ⊆ NN of cardinality p with X 6|=
(

Ω
Γ

)
.

By definition of p, there exists a centered family X ⊆ [N]ℵ0 of cardinality p with no almost

intersection. For each n ∈ N, let Un := {A ∈ [N]ℵ0 | n ∈ A}, this is an open set and

U := {Un | n ∈ N} ∈ ΩX , because if F ⊆ X is finite, then centeredness of X implies that

I =
⋂
F is infinite, and hence I ⊆ {n ∈ N | F ⊆ Un}.

Finally, suppose there exists a strictly increasing function k : N→ N such that {Uk(n) | n ∈
N} ∈ ΓX . We claim that B := Im(k) is an almost-intersection of X which is a contradiction.

Indeed, for A ∈ X, if {n ∈ N | A 6∈ Uk(n)} is finite, then B \ A is finite. �
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12. 02.02.06

Definition 12.1. For families A,B, let G1(A,B) denote the game of length ω, where at

round n ∈ N, player I picks Un ∈ A and player II responds with picking Un ∈ Un.

I: U1 ∈ A U2 ∈ A . . .
↘ ↗ ↘

II: U1 ∈ U1 U2 ∈ U2 . . .

Player II wins this game if {Un | n ∈ N} ∈ B, otherwise, player I wins the game.

Let Seq(A) denote the family of finite sequences (including the empty sequence) with

elements from a given set A. If s = 〈x1, .., xn〉 ∈ Seq(A) and x ∈ A, then s_x := 〈x1, .., xn, x〉.

Definition 12.2. A function σ : Seq(
⋃
A)→ A is a winning strategy for player I in G1(A,B)

iff player I plays according to this strategy, then he wins the game:

I: U1 := σ(∅) U2 := σ〈U1〉 U3 := σ〈U1, U2〉 . . .
↘ ↗ ↘ ↗

II: U1 ∈ U1 U2 ∈ U2 . . .

Definition 12.3. A function τ : Seq(A) \ {∅} →
⋃
A is a winning strategy for player II in

G1(A,B) iff player II plays according to this strategy, then he wins the game:

I: U1 ∈ A U2 ∈ A . . .
↘ ↗ ↘

II: U1 := τ〈U1〉 U2 := τ〈U1,U2〉 . . .

Definition 12.4. For a given families A,B, we write I ↑ G1(A,B) to denote that player I

has winning strategy in G1(A,B). We define I 6↑ G1(A,B), II ↑ G1(A,B), II 6↑ G1(A,B) in

the obvious fashion.

The game G1(A,B) is said to be determined iff I ↑ G1(A,B) ∨ II ↑ G1(A,B).

Note that both players cannot have a winning strategy in the same game.

Observation 12.5. Suppose 〈X,O〉 is a topological space, and A,B are given families.

Then X |= II ↑ G1(A,B) implies X |= I 6↑ G1(A,B) implies X |= S1(A,B).

Notice that if G1(A,B) is determined, then X |= II ↑ G1(A,B) iff X |= I 6↑ G1(A,B).

Lemma 12.6. Suppose 〈X,O〉 is a topological space.

We define the following cardinal function invariant:

δ(X) := min{κ+ ℵ0 | ∃F ∈ [[O]≤κ]≤κ.∀U ∈ F
(⋃

U = X
)
∧ ∀φ ∈

∏
F
(
|
⋂

Im(φ)| ≤ κ
)
}.

Lemma 12.7. If 〈X, d〉 is a metric space, then δ(X) ≤ d(X).
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Proof. Put κ := δ(X). Let D := {xi | i < κ} enumerate a dense subset of X.

Let F := {Un | n ∈ N}, where Un := {Br(xi) | i < κ, r ∈ Q ∩ (0, 1
n+1

)} for all n ∈ N.

Since |Un| ≤ ℵ0 · κ = κ for all n ∈ N, we have that F ∈ [[O]≤κ]ℵ0 , where O denotes the

family of all open sets in this metric space. In particular, F ∈ [[O]≤κ]≤κ.

Since D is a dense subset, we also have that
⋃
Un = X for all n ∈ N.

Finally, if φ ∈
∏
F is a choice function, then letting Un := φ(Un) for all n ∈ N, we get

that limn→∞Diam(Un) = 0, and hence
⋂

Im(φ) ≤ 1 ≤ κ. �

Theorem 12.8. Suppose 〈X,O〉 is a topological space, O := OX , and X |= II ↑ G1(O,O).

Then |X| ≤ δ(X).

Proof. Let F ∈ [[O]≤κ]≤κ be a witness to the value of κ := δ(X). We shall examine the

outcome of the game G1(O,O) when player II plays with a winning strategy, τ , against

members of F . For any sequence s ∈ Seq(F), let As := {τ(s_U) | U ∈ F}. Since U 7→
τ(s_U) defines a choice function on F , we know that |As| ≤ κ.

Claim 12.9. A :=
⋃
s∈Seq(F)

⋂
As is of cardinality ≤ κ.

Proof. |F| ≤ κ, and the latter is an infinite cardinal number, thus | Seq(F)| ≤ κ.

It follows that A is the union of length at most κ of sets of at most cardinality κ. �

Claim 12.10. A = X.

Proof. Suppose not and pick x ∈ X \A. It follows that for all s ∈ Seq(F), there exists some

U ∈ F such that x 6∈ τ(s_U). This implies that we may define inductively, a sequence 〈Un ∈
F | n ∈ N〉 such that x 6∈ τ〈U1, ..,Un〉 for all n ∈ N. In particular

⋃
n∈N τ〈U1, ..,Un〉 6= X, a

contradiction to the assumption that τ is a winning strategy for II in G1(O,O). �

It follows that |X| = |A| ≤ κ. �

Corollary 12.11 (Telgarski). If 〈X, d〉 is a separable metric space, then X |= II ↑ G1(O,O)

iff X is countable.

Proof. If X is countable, then it is easy to introduce a winning strategy for II in this game.

For the other direction, we apply to Theorem 12.8 and Lemma 12.7 to conclude |X| ≤
δ(X) ≤ (.X) = ℵ0. �

Define the game Gfin(A,B) in the obvious fashion, then:

Theorem 12.12 (Telgarski). For all X ⊆ R, X |= II ↑ Gfin(O,O) iff X is σ-compact.

Proof. Essentially the same as in the proof of 12.8. �

Theorem 12.13 (Pavlikowsky). For all X ⊆ R, X |= I 6↑ G1(O,O) iff X |= S1(O,O).
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Corollary 12.14. It is consistent that the game G1(OX ,OX) is determined for all X ⊆ R.

Proof. Assume the Borel conjecture 7.5 (Recall that BC is consistent). Fix X ⊆ R.

If X |= S1(O,O), then by Observation 8.1, |X| ≤ ℵ0, together with Corollary 12.11, we

conclude that II ↑ G1(Ox,OX).

Suppose X 6|= S1(O,O), then by Theorem 12.13, we have I ↑ G1(Ox,OX). �

Corollary 12.15 (Rec law). It is consistent to have some X ⊆ R such that the game

G1(OX ,OX) is not determined.

Proof. Let L ⊆ R be a Luzin set. L |= S1(O,O), thus by Theorem 12.13, L |= I 6↑ G1(O,O).

L is uncountable, thus by Corollary 12.11, L |= II 6↑ G1(O,O). �
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