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Abstract. We present a simple construction of a topological space
satisfying Menger’s covering property, but not Hurewicz’s property.

1. Introduction

1.1. Background. A topological space 〈X,O〉 is σ-compact iffX =
⋃

n∈NKn,
where Kn is a compact subspace for each n ∈ N. U is an open cover of X
iff U ⊆ O and X ⊆

⋃
U . U is a γ-cover iff U is infinite, and for each x ∈ X,

{U ∈ U | x 6∈ U} is finite.
In [4], Menger conjectured that a space is σ-compact iff it satisfies Menger’s

covering property, that is, if for any countable sequence of open covers of X,
〈Un | n ∈ N〉, there exists some 〈Fn ∈ [Un]<ω | n ∈ N〉 such that

⋃
n∈N Fn is

an open cover of X. We denote this property by Sfin(O,O).
Hurewicz, who knew that a Luzin set is a consistent counter-example to

Menger’s conjecture, suggested his own property, Hurewicz’s covering prop-
erty, conjecturing in [3] that a space is σ-compact iff it satisfies Ufin(O,Γ),
that is, if for any sequence of open covers of X, 〈Un | n ∈ N〉, each do not
contain a finite subcover, there exists some 〈Fn ∈ [Un]<ω | n ∈ N〉, such
that {

⋃
Fn | n ∈ N} forms a γ-cover of X.

It is not hard to see that σ-compact ⇒ Ufin(O,Γ) ⇒ Sfin(O,O). In this
paper, we prove that:

Theorem 1.1. Sfin(O,O) 6⇒ Ufin(O,Γ).

This result was first established by Chaber and Pol in [1] using the topo-
logical “Michael technique” and a dichotomic argument.1 Then, Tsaban
and Zdomsky obtained in [6] more general results, among them, a combi-
natorial, direct and non-dichotomic, proof for this theorem. Our proof is
dichotomic and focuses on obtaining exactly what is stated in Theorem 1.1,
and hence it is the simplest of all.

The refutation of Menger’s conjecture was first established by Fremlin
and Miller in [2].

Date: May 4, 2006.
1Distinguishing between the case b = d and the case b < d (See Definition 2.3).
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1.2. Notation. We identify the set of natural numbers N with the ordinal
ω, and each natural number n with its set of predecessors {k ∈ N | k < n}.
We sometime consider 2 = {0, 1} as a 2-points discrete metric space, ω as
a countable discrete metric space, and ω + 1 := ω ∪ {ω} as the one-point
compactification of ω. For a set A and a cardinal µ, let [A]µ := {B ⊆ A |
|B| = µ} and [A]<ω := {B ⊆ A | B is finite }.

1.3. Organization of this paper. In section 2 we include all the relevant
definitions and folklore facts needed to carry out the proof. In section 3 we
prove the theorem mentioned in the abstract.

2. Basic facts

The Baire space, ωω := {f | f : ω → ω}, is a product space
∏

n∈ω ω. Its

topology is compatible with the complete metric ρ(f, g) := 2−∆(f,g) where
f, g ∈ ωω are distinct and ∆(f, g) := min{n | f(n) 6= g(n)}. Clearly, ωω is
homeomorphic to its closed subspace ω↑ω := {f ∈ ωω | f is strictly-increasing }.

The Bartoszyński space, (ω+1)ω, is the product space
∏

n∈ω(ω+1). It is
homeomorphic to its subspace (ω+1)↑ω of only strictly-increasing functions:

(ω + 1)↑ω :=

{
f ∈ (ω + 1)ω

∣∣∣n < m→
(
f(n) < ω → f(n) < f(m)
f(n) = ω → f(m) = ω

)}
.

The Cantor space, 2ω := {f | f : ω → 2}, is a product space
∏

n∈ω 2. By
Tychonoff’s theorem, it is compact.

To each A ⊆ ω, we attach a function χA ∈ 2ω, letting χA(n) = 1 iff
n ∈ A. A moment’s reflection makes it clear that ψ : ω↑ω → 2ω defined by
letting ψ(f) := χ(Im(f)∩ω) for each f ∈ ω↑ω is an homeomorphism.

Definition 2.1. For A ⊆ ω, let Ac := ω \ A.
For f ∈ (ω + 1)↑ω, let f c := ψ−1(χω\Im(f)).

Evidently, χA 7→ χAc (for all A ⊆ ω) is an automorphism of the Cantor
space, and hence the complement operator f 7→ f c (for all f ∈ (ω+ 1)↑ω) is
an automorphism of the Bartoszyński space.

Definition 2.2. For each f, g ∈ ω↑ω, let f ≤∗ g mean that there exists
some m ∈ ω such that f(n) ≤ g(n) for all n > m. For A ⊆ ω↑ω, let the
downward closure of A be A := {g ∈ ω↑ω | ∃f ∈ A(g ≤∗ f)}, and the
external cofinality of A be ecf(A) := min{|B| | B ⊆ ω↑ω, A ⊆ B}.

Definition 2.3. A subset A ⊆ ω↑ω is said to be ≤∗-bounded iff ecf(A) ≤ 1,
and dominating iff ω↑ω ⊆ A. Let b := min{|A| | A ⊆ ω↑ω, ecf(A) > 1},
d := min{|A| | A ⊆ ω↑ω is dominating }, and c := |ω↑ω|.

It is not hard to see that ℵ1 ≤ b ≤ d ≤ c = 2ℵ0 . However, the statement
“b < d” is independent of ZFC, the usual axioms of set theory.
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Lemma 2.4. Suppose Y ⊆ ω↑ω is a compact subspace, then Y ⊆ {g} for

some g ∈ ω↑ω.

Proof. For all n ∈ ω, consider the projection πn : ω↑ω → ω such that
πn(f) = f(n) for all f ∈ ω↑ω. By definition of the Baire space, each πn is
continuous and by the hypothesis, Y is compact and it follows that πn[Y ]
is compact in ω. Since any compact subspace of the discrete space ω is
finite, we conclude that for all n ∈ ω, there exists some mn ∈ ω such that
πn[Y ] ⊆ {0, ..,mm}. It other words, the function g ∈ ω↑ω defined by letting
g(n) = n+

∑n
k=0mn for all n ∈ ω works. �

Lemma 2.5. For all g ∈ ω↑ω, Dg := {f ∈ ω↑ω | ∀n ∈ ω(f(n) ≤ g(n))} is a
closed, nowhere-dense, subspace of ω↑ω.

Proof. Fix g ∈ ω↑ω. Assume h ∈ ω↑ω \ Dg. Then there exists some n ∈ ω
such that h(n) > g(n). Then h is in the open set U = {f ∈ ω↑ω | f(n) =
h(n)} and U ⊆ ω↑ω \Dg.

To see that ω↑ω \ Dg is dense, we fix an open set U , and show that
U ∩ (ω↑ω \Dg) 6= ∅. Find n ∈ ω, and σ : {0, ..n} → ω such that {f ∈ ω↑ω |
f � {0, .., n} = σ} ⊆ U . Let h ∈ ω↑ω be such that h � {0, .., n} = σ and
h(k) = g(k) + 1 for all k > n. Clearly, h ∈ U \Dg. �

Corollary 2.6. For all g ∈ ω↑ω, Eg := {f ∈ ω↑ω | f ≤∗ g} is an Fσ meager
subspace of ω↑ω.

Proof. If σ is a finite sequence of natural numbers, we may consider sw(σ, g) ∈
ωω such that sw(σ, g)(n) = σ(n) if n ∈ dom(σ) and sw(σ, g)(n) = g(n) oth-
erwise. Then Eg is the countable union of closed, nowhere-dense, sets:

Eg =
⋃
{Dsw(σ,g) | σ is a finite sequence of natural numbers, sw(σ, g) ∈ ω↑ω}. �

Finally, we would need the following auxiliary lemma:

Lemma 2.7 (Hurewicz). For a topological space 〈X,O〉 admitting a count-
able base of clopen sets, TFAE:

(a.1) X |= Sfin(O,O).
(a.2) Any continuous image of X into ω↑ω is not dominating.

and TFAE:

(b.1) X |= Ufin(O,Γ).
(b.2) Any continuous image of X into ω↑ω is ≤∗-bounded.

Proof. See [5]. �

It is well-known that the Baire space and the Cantor space (and hence
also the Bartoszyński spaces) are separable, and admits a countable base of
clopen sets.
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3. The simple construction

Theorem 3.1. There exists X ⊆ ω↑ω such that:

(a) X |= Sfin(O,O),
(b) X 6|= Ufin(O,Γ) (and in particular, X is not σ-compact).

In particular, there exists a subspace of the Baire space which is a counter-
example to Menger’s conjecture.

Proof. If b < d, then pick a ≤∗-unbounded family X ∈ [ω↑ω]b.
By Theorem 2.7, X |= Sfin(O,O) and X 6|= Ufin(O,Γ).
Assume now b = d. Pick a dominating family {fα | α < b} ⊆ ω↑ω.
Put A := {f ∈ ω↑ω | f c ∈ ω↑ω} = {f ∈ ω↑ω | ω \ Im(f) is infinite }.
We now define a sequence {gα | α < b} ⊆ A by induction on α < b. Let

g0 := f0, and assume {gβ | β < α} have already been defined.
Since B := {gβ, fβ, f

c
β | β < α} ⊆ ω↑ω is of cardinality < b, we may find

some h ∈ ω↑ω such that B ⊆ {h}. Now, by Corollary 2.6, C1 := {f ∈ ω↑ω |
f 6≤∗ h} is co-meager. It follows from the remark after Definition 2.1 that
C2 := {f c | f ∈ ω↑ω, f 6≤∗ h} ⊆ (ω + 1)↑ω is also co-meager.

Let Q := (ω + 1)↑ω \ ω↑ω. Since Q is countable, it is meager. Thus, by
Baire’s category theorem, we may pick gα ∈ C1 ∩ C2 \Q = {f ∈ ω↑ω | f c ∈
ω↑ω, f 6≤∗ h, f c 6≤∗ h}. End of the construction.

Claim 3.2. For all f ∈ ω↑ω:

(1) |{gα | α < b} ∩ {f}| < b

(2) |{gc
α | α < b} ∩ {f}| < b

Proof. Pick f ∈ ω↑ω. By the choice of our dominating family, there exists
some δ < b such that f ≤∗ fδ. Assume δ < α < b, then by the choice of gα,
{n < ω | fδ(n) ≤ gα(n)} and {n < ω | fδ(n) ≤ gc

α(n)} are both infinite. In
particular, gα 6≤∗ f and gc

α 6≤∗ h, thus:

max
{∣∣{gα | α < b} ∩ {f}

∣∣, ∣∣{gα | α < b} ∩ {f}
∣∣} ≤ |δ| < b. �

Put Y := {gα | α < b} ∪Q and let X be the image of Y under the com-
plement operator. It is obvious that X ⊆ ω↑ω. Since X and Y are homeo-
morphic, it suffices to show that Y |= Sfin(O,O) and X 6|= Ufin(O,Γ).

However, X 6|= Ufin(O,Γ) follows directly from Claim 3.2.2 and Theorem
2.7.b, and so, we are left with showing that Y |= Sfin(O,O).

Indeed, the standard argument of Tsaban and Zdmosky works here. Sup-
pose 〈Un | n ∈ N〉 is a family of open covers. Let {qn | n ∈ N} enumerate
Q. For each n ∈ N, pick U2n ∈ U2n such that qn ∈ U2n. Let U :=

⋃
n∈N U2n.

Since U is open, we get that (ω + 1)↑ω \ U is a compact subspace of ω↑ω,
thus, by applying to Lemma 2.4, we may find f ∈ ω↑ω with Y \ Q ⊆ {f}.
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It follows from Claim 3.2.1 that |Y \Q| < b, and hence, by Theorem 2.7.a,
there exists 〈F2n+1 ∈ [U2n+1]

<ω | n ∈ N〉 such that Y \ Q ⊆
⋃ ⋃

n∈N F2n+1.
Letting F2n := {U2n} for all n ∈ N, we get that 〈Fn | n ∈ N〉 works. �

Corollary 3.3. There exists B ⊆ ωω which is ≤∗-unbounded but not dom-
inating. Further more, B satisfies:

(a) For all f ∈ ωω, |B ∩ {f}| < b.

(b) For any continuous function ϕ : ωω → ωω, ϕ[B] is not ≤∗-dominating.
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[4] M. K. Menger, Einige Überdeckungssätze der Punktmengenlehre, Sitzungsberichte
der Wiener Akademie 133 (1924), 421–444.

[5] I. Rec law, Every Luzin set is undetermined in point-open game, Fundamenta Math-
ematicae 144 (1994), 43–54.

[6] B. Tsaban and L. Zdomsky, Scales, fields, and a problem of Hurewicz, preprint.

School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978,
Israel

URL: http://www.tau.ac.il/~rinot


